Generalized pooling pyramid with hierarchical dictionary sparse coding for event and object recognition

Shuai Chen, Bo Ma*, Pei Luo

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Feature coding and vector pooling are essential for image recognition in bag-of-visual-words (BoW) method. Encoding the low-level feature to rich one and pooling it without any information loss are very challenging works. In this paper, generalized pooling pyramid with hierarchical dictionary sparse coding is introduced to get rich sparse codes and alleviate the information loss in the phase of pooling. It includes two modules: First, with the low-level feature, hierarchical dictionary is learned for sparse coding to generate the hierarchical sparse representation. Second, in the phase of vector pooling, we present generalized pooling pyramid by utilizing the probabilistic function to model the statistical distribution of sparse codes. In the generalized pooling pyramid, the Fisher vectors which are computed with Gaussian Mixture (GMM) in different levels, are fused to represent the images. The performance of our method outperforms state-of-the-art performance in a large number of image categorization experiments on the event dataset (UIUC-Sport dataset) and the object recognition dataset (Caltech101 dataset).

源语言英语
主期刊名2017 IEEE International Conference on Image Processing, ICIP 2017 - Proceedings
出版商IEEE Computer Society
2349-2353
页数5
ISBN(电子版)9781509021758
DOI
出版状态已出版 - 2 7月 2017
活动24th IEEE International Conference on Image Processing, ICIP 2017 - Beijing, 中国
期限: 17 9月 201720 9月 2017

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
2017-September
ISSN(印刷版)1522-4880

会议

会议24th IEEE International Conference on Image Processing, ICIP 2017
国家/地区中国
Beijing
时期17/09/1720/09/17

指纹

探究 'Generalized pooling pyramid with hierarchical dictionary sparse coding for event and object recognition' 的科研主题。它们共同构成独一无二的指纹。

引用此