TY - JOUR
T1 - General solution to gradient-induced transverse and longitudinal relaxation of spins undergoing restricted diffusion
AU - Zheng, W.
AU - Gao, H.
AU - Liu, J. G.
AU - Zhang, Y.
AU - Ye, Q.
AU - Swank, C.
PY - 2011/11/14
Y1 - 2011/11/14
N2 - We develop an approach, by calculating the autocorrelation function of spins, to derive the magnetic field gradient-induced transverse (T2) relaxation of spins undergoing restricted diffusion. This approach is an extension to the method adopted by McGregor. McGregor's approach solves the problem only in the fast diffusion limit; however, our approach yields a single analytical solution suitable in all diffusion regimes, including the intermediate regime. This establishes a direct connection between the well-known slow diffusion result of Torrey and the fast diffusion result. We also perform free induction decay measurements on spin-exchange optically polarized 3He gas with different diffusion constants. The measured transverse relaxation profiles are compared with the theory and satisfactory agreement has been found throughout all diffusion regimes. In addition to the transverse relaxation, this approach is also applicable to solving the longitudinal relaxation (T 1) regardless of the diffusion limits. It turns out that the longitudinal relaxation in the slow diffusion limit differs by a factor of 2 from that in the fast diffusion limit.
AB - We develop an approach, by calculating the autocorrelation function of spins, to derive the magnetic field gradient-induced transverse (T2) relaxation of spins undergoing restricted diffusion. This approach is an extension to the method adopted by McGregor. McGregor's approach solves the problem only in the fast diffusion limit; however, our approach yields a single analytical solution suitable in all diffusion regimes, including the intermediate regime. This establishes a direct connection between the well-known slow diffusion result of Torrey and the fast diffusion result. We also perform free induction decay measurements on spin-exchange optically polarized 3He gas with different diffusion constants. The measured transverse relaxation profiles are compared with the theory and satisfactory agreement has been found throughout all diffusion regimes. In addition to the transverse relaxation, this approach is also applicable to solving the longitudinal relaxation (T 1) regardless of the diffusion limits. It turns out that the longitudinal relaxation in the slow diffusion limit differs by a factor of 2 from that in the fast diffusion limit.
UR - http://www.scopus.com/inward/record.url?scp=81455135554&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.84.053411
DO - 10.1103/PhysRevA.84.053411
M3 - Article
AN - SCOPUS:81455135554
SN - 1050-2947
VL - 84
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 5
M1 - 053411
ER -