Gelfand-Kirillov Dimensions of Highest Weight Harish-Chandra Modules for SU(p,q)

Zhanqiang Bai, Xun Xie*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

Let (G,K) be an irreducible Hermitian symmetric pair of non-compact type with G=SU(p,q), and let λ be an integral weight such that the simple highest weight module L(λ) is a Harish-Chandra (g,K-module. We give a combinatorial algorithm for the Gelfand-Kirillov (GK) dimension of L(λ). This enables us to prove that the GK dimension of L(λ) decreases as the integer {λ+ρ,βvee increases, where ρ is the half sum of positive roots and β is the maximal non-compact root. Finally by the combinatorial algorithm, we obtain a description of the associated variety of L(λ).

源语言英语
页(从-至)4392-4418
页数27
期刊International Mathematics Research Notices
2019
14
DOI
出版状态已出版 - 1 7月 2019

指纹

探究 'Gelfand-Kirillov Dimensions of Highest Weight Harish-Chandra Modules for SU(p,q)' 的科研主题。它们共同构成独一无二的指纹。

引用此