Gaussian sum particle filtering based on RBF neural networks

Guochuang Fan*, Yaping Dai, Hongyan Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 1
see details

摘要

A Gaussian sum particle filter using RBF Neural Network (BRF-GSPF) is proposed to deal with nonlinear sequential Bayesian estimation. The nonlinear non-Gaussian filtering and predictive distributions are approximated as weighted Gaussian mixtures, and mixtures components are gotten by RBF neural network. This method implements conveniently in parallel way by cancelling resampling that solves weight degeneracy in particle filter. The tracking performance of the RBF-GSPF is evaluated and compared to the particle filter (PF) via simulations with heavy-tailed glint measurement noise. It is shown that the RBF-GSPF improves tracking precise and has strong adaptability.

源语言英语
主期刊名Proceedings of the 7th World Congress on Intelligent Control and Automation, WCICA'08
3071-3076
页数6
DOI
出版状态已出版 - 2008
活动7th World Congress on Intelligent Control and Automation, WCICA'08 - Chongqing, 中国
期限: 25 6月 200827 6月 2008

出版系列

姓名Proceedings of the World Congress on Intelligent Control and Automation (WCICA)

会议

会议7th World Congress on Intelligent Control and Automation, WCICA'08
国家/地区中国
Chongqing
时期25/06/0827/06/08

指纹

探究 'Gaussian sum particle filtering based on RBF neural networks' 的科研主题。它们共同构成独一无二的指纹。

引用此

Fan, G., Dai, Y., & Wang, H. (2008). Gaussian sum particle filtering based on RBF neural networks. 在 Proceedings of the 7th World Congress on Intelligent Control and Automation, WCICA'08 (页码 3071-3076). 文章 4593412 (Proceedings of the World Congress on Intelligent Control and Automation (WCICA)). https://doi.org/10.1109/WCICA.2008.4593412