Gas-phase catalytic hydration of I2O5 in the polluted coastal regions: Reaction mechanisms and atmospheric implications

Yan Liang, Hui Rong, Ling Liu, Shaobing Zhang, Xiuhui Zhang*, Wenguo Xu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Marine aerosols play an important role in the global aerosol system. In polluted coastal regions, ultra-fine particles have been recognized to be related to iodine-containing species and is more serious due to the impact of atmospheric pollutants. Many previous studies have identified iodine pentoxide (I2O5, IP) to be the key species in new particles formation (NPF) in marine regions, but the role of IP in the polluted coastal atmosphere is far to be fully understood. Considering the high humidity and concentrations of pollutants in the polluted coastal regions, the gas-phase hydration of IP catalyzed by sulfuric acid (SA), nitric acid (NA), dimethylamine (DMA), and ammonia (A) have been investigated at DLPNO-CCSD(T)//ωB97X-D/aug-cc-pVTZ + aug-cc-pVTZ-PP with ECP28MDF (for iodine) level of theory. The results show that the hydration of IP involves a significant energy barrier of 22.33 kcal/mol, while the pollutants SA, NA, DMA, and A all could catalyze the hydration of IP. Especially, with SA and DMA as catalysts, the hydration reactions of IP present extremely low barriers and high rate constants. It is suggested that IP is unstable under the catalysis of SA and DMA to generate iodic acid, which is the key component in NPF in marine regions. Thus, the catalytic hydration of IP is very likely to trigger the formation of iodine-containing particles. Our research provides a clear picture of the catalytic hydration of IP as well as theoretical guidance for NPF in the polluted coastal atmosphere.

源语言英语
页(从-至)412-421
页数10
期刊Journal of Environmental Sciences (China)
114
DOI
出版状态已出版 - 4月 2022

指纹

探究 'Gas-phase catalytic hydration of I2O5 in the polluted coastal regions: Reaction mechanisms and atmospheric implications' 的科研主题。它们共同构成独一无二的指纹。

引用此