TY - JOUR
T1 - Gas-phase catalytic hydration of I2O5 in the polluted coastal regions
T2 - Reaction mechanisms and atmospheric implications
AU - Liang, Yan
AU - Rong, Hui
AU - Liu, Ling
AU - Zhang, Shaobing
AU - Zhang, Xiuhui
AU - Xu, Wenguo
N1 - Publisher Copyright:
© 2021
PY - 2022/4
Y1 - 2022/4
N2 - Marine aerosols play an important role in the global aerosol system. In polluted coastal regions, ultra-fine particles have been recognized to be related to iodine-containing species and is more serious due to the impact of atmospheric pollutants. Many previous studies have identified iodine pentoxide (I2O5, IP) to be the key species in new particles formation (NPF) in marine regions, but the role of IP in the polluted coastal atmosphere is far to be fully understood. Considering the high humidity and concentrations of pollutants in the polluted coastal regions, the gas-phase hydration of IP catalyzed by sulfuric acid (SA), nitric acid (NA), dimethylamine (DMA), and ammonia (A) have been investigated at DLPNO-CCSD(T)//ωB97X-D/aug-cc-pVTZ + aug-cc-pVTZ-PP with ECP28MDF (for iodine) level of theory. The results show that the hydration of IP involves a significant energy barrier of 22.33 kcal/mol, while the pollutants SA, NA, DMA, and A all could catalyze the hydration of IP. Especially, with SA and DMA as catalysts, the hydration reactions of IP present extremely low barriers and high rate constants. It is suggested that IP is unstable under the catalysis of SA and DMA to generate iodic acid, which is the key component in NPF in marine regions. Thus, the catalytic hydration of IP is very likely to trigger the formation of iodine-containing particles. Our research provides a clear picture of the catalytic hydration of IP as well as theoretical guidance for NPF in the polluted coastal atmosphere.
AB - Marine aerosols play an important role in the global aerosol system. In polluted coastal regions, ultra-fine particles have been recognized to be related to iodine-containing species and is more serious due to the impact of atmospheric pollutants. Many previous studies have identified iodine pentoxide (I2O5, IP) to be the key species in new particles formation (NPF) in marine regions, but the role of IP in the polluted coastal atmosphere is far to be fully understood. Considering the high humidity and concentrations of pollutants in the polluted coastal regions, the gas-phase hydration of IP catalyzed by sulfuric acid (SA), nitric acid (NA), dimethylamine (DMA), and ammonia (A) have been investigated at DLPNO-CCSD(T)//ωB97X-D/aug-cc-pVTZ + aug-cc-pVTZ-PP with ECP28MDF (for iodine) level of theory. The results show that the hydration of IP involves a significant energy barrier of 22.33 kcal/mol, while the pollutants SA, NA, DMA, and A all could catalyze the hydration of IP. Especially, with SA and DMA as catalysts, the hydration reactions of IP present extremely low barriers and high rate constants. It is suggested that IP is unstable under the catalysis of SA and DMA to generate iodic acid, which is the key component in NPF in marine regions. Thus, the catalytic hydration of IP is very likely to trigger the formation of iodine-containing particles. Our research provides a clear picture of the catalytic hydration of IP as well as theoretical guidance for NPF in the polluted coastal atmosphere.
KW - Atmospheric pollutants
KW - Catalytic hydration
KW - Iodine oxides
KW - Iodine pentoxide
KW - Proton transfer
UR - http://www.scopus.com/inward/record.url?scp=85124955699&partnerID=8YFLogxK
U2 - 10.1016/j.jes.2021.09.028
DO - 10.1016/j.jes.2021.09.028
M3 - Article
C2 - 35459504
AN - SCOPUS:85124955699
SN - 1001-0742
VL - 114
SP - 412
EP - 421
JO - Journal of Environmental Sciences (China)
JF - Journal of Environmental Sciences (China)
ER -