摘要
As one of the key components of blockchain, smart contract is playing a vital role in achieving auto-functions; however, reentrant attacks are threatening the implementation of smart contracts, which limits the adoption of blockchain systems in various scenarios. To address this issue, we propose a reentrant vulnerability detection model based on word embedding, similarity detection, and Generative Adversarial Networks (GAN). Additionally, we provide a new approach for dynamically preventing reentrant attacks. We also implement experiments to evaluate our model and results show our scheme achieves 92% detecting accuracy for reentrant attack detection.
源语言 | 英语 |
---|---|
主期刊名 | Knowledge Science, Engineering and Management - 14th International Conference, KSEM 2021, Proceedings |
编辑 | Han Qiu, Cheng Zhang, Zongming Fei, Meikang Qiu, Sun-Yuan Kung |
出版商 | Springer Science and Business Media Deutschland GmbH |
页 | 585-597 |
页数 | 13 |
ISBN(印刷版) | 9783030821524 |
DOI | |
出版状态 | 已出版 - 2021 |
活动 | 14th International Conference on Knowledge Science, Engineering and Management, KSEM 2021 - Tokyo, 日本 期限: 14 8月 2021 → 16 8月 2021 |
出版系列
姓名 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
卷 | 12817 LNAI |
ISSN(印刷版) | 0302-9743 |
ISSN(电子版) | 1611-3349 |
会议
会议 | 14th International Conference on Knowledge Science, Engineering and Management, KSEM 2021 |
---|---|
国家/地区 | 日本 |
市 | Tokyo |
时期 | 14/08/21 → 16/08/21 |
指纹
探究 'GAN-Enabled Code Embedding for Reentrant Vulnerabilities Detection' 的科研主题。它们共同构成独一无二的指纹。引用此
Zhao, H., Su, P., Wei, Y., Gai, K., & Qiu, M. (2021). GAN-Enabled Code Embedding for Reentrant Vulnerabilities Detection. 在 H. Qiu, C. Zhang, Z. Fei, M. Qiu, & S.-Y. Kung (编辑), Knowledge Science, Engineering and Management - 14th International Conference, KSEM 2021, Proceedings (页码 585-597). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 卷 12817 LNAI). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-82153-1_48