摘要
Motion tracking techniques can revise the bias arising from respiration-caused motion in radiation therapy. Tracking key structures accurately and at a real-time speed is necessary for effective motion tracking. In this work, we propose a fusion Siamese network with drift correction for target tracking in ultrasound sequences. Specifically, the network fuses four response maps generated by the cross-correlation between convolution layers at different resolutions to reduce up-sampling error. A correction strategy combining local structural similarity and target trajectory is proposed to revise the target drift predicted by the network. Moreover, a coarse-to-fine strategy is proposed to train the network with a limited number of annotated images, in which an augmented dataset is generated by corner points to learn network features with high generalizability. The proposed method is evaluated on the basis of the public dataset of the MICCAI 2015 Challenge on Liver UltraSound Tracking (CLUST) and our ultrasound image dataset, which is provided by the Chinese People's Liberation Army General Hospital (CPLAGH). A tracking error of 0.80 ± 1.16 mm is observed for 85 targets across 39 ultrasound sequences in the CLUST dataset. A tracking error of 0.61 ± 0.36 mm is observed for 20 targets across 10 ultrasound sequences in the CPLAGH dataset. The effectiveness of the proposed fusion and correction strategies is verified via two ablation experiments. Overall, the experimental results demonstrate the effectiveness of the proposed fusion Siamese network with drift correction and reveal its potential in clinical practice.
源语言 | 英语 |
---|---|
文章编号 | 045018 |
期刊 | Physics in Medicine and Biology |
卷 | 67 |
期 | 4 |
DOI | |
出版状态 | 已出版 - 21 2月 2022 |