TY - GEN
T1 - FTF-ER
T2 - 32nd ACM International Conference on Multimedia, MM 2024
AU - Pang, Jinhui
AU - Lin, Changqing
AU - Hao, Xiaoshuai
AU - Yin, Rong
AU - Wang, Zixuan
AU - Zhang, Zhihui
AU - He, Jinglin
AU - Tai Sheng, Huang
N1 - Publisher Copyright:
© 2024 ACM.
PY - 2024/10/28
Y1 - 2024/10/28
N2 - Continual graph learning (CGL) is an important and challenging task that aims to extend static GNNs to dynamic task flow scenarios. As one of the mainstream CGL methods, the experience replay (ER) method receives widespread attention due to its superior performance. However, existing ER methods focus on identifying samples by feature significance or topological relevance, which limits their utilization of comprehensive graph data. In addition, the topology-based ER methods only consider local topological information and add neighboring nodes to the buffer, which ignores the global topological information and increases memory overhead. To bridge these gaps, we propose a novel method called Feature-Topology Fusion-based Experience Replay (FTF-ER) to effectively mitigate the catastrophic forgetting issue with enhanced efficiency. Specifically, from an overall perspective to maximize the utilization of the entire graph data, we propose a highly complementary approach including both feature and global topological information, which can significantly improve the effectiveness of the sampled nodes. Moreover, to further utilize global topological information, we propose Hodge Potential Score (HPS) as a novel module to calculate the topological importance of nodes. HPS derives a global node ranking via Hodge decomposition on graphs, providing more accurate global topological information compared to neighbor sampling. By excluding neighbor sampling, HPS significantly reduces buffer storage costs for acquiring topological information and simultaneously decreases training time. Compared with state-of-the-art methods, FTF-ER achieves a significant improvement of 3.6% in AA and 7.1% in AF on the OGB-Arxiv dataset, demonstrating its superior performance in the class-incremental learning setting.
AB - Continual graph learning (CGL) is an important and challenging task that aims to extend static GNNs to dynamic task flow scenarios. As one of the mainstream CGL methods, the experience replay (ER) method receives widespread attention due to its superior performance. However, existing ER methods focus on identifying samples by feature significance or topological relevance, which limits their utilization of comprehensive graph data. In addition, the topology-based ER methods only consider local topological information and add neighboring nodes to the buffer, which ignores the global topological information and increases memory overhead. To bridge these gaps, we propose a novel method called Feature-Topology Fusion-based Experience Replay (FTF-ER) to effectively mitigate the catastrophic forgetting issue with enhanced efficiency. Specifically, from an overall perspective to maximize the utilization of the entire graph data, we propose a highly complementary approach including both feature and global topological information, which can significantly improve the effectiveness of the sampled nodes. Moreover, to further utilize global topological information, we propose Hodge Potential Score (HPS) as a novel module to calculate the topological importance of nodes. HPS derives a global node ranking via Hodge decomposition on graphs, providing more accurate global topological information compared to neighbor sampling. By excluding neighbor sampling, HPS significantly reduces buffer storage costs for acquiring topological information and simultaneously decreases training time. Compared with state-of-the-art methods, FTF-ER achieves a significant improvement of 3.6% in AA and 7.1% in AF on the OGB-Arxiv dataset, demonstrating its superior performance in the class-incremental learning setting.
KW - continual graph learning
KW - experience replay
KW - hodge decomposition
UR - http://www.scopus.com/inward/record.url?scp=85207867517&partnerID=8YFLogxK
U2 - 10.1145/3664647.3681457
DO - 10.1145/3664647.3681457
M3 - Conference contribution
AN - SCOPUS:85207867517
T3 - MM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia
SP - 8336
EP - 8344
BT - MM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
Y2 - 28 October 2024 through 1 November 2024
ER -