Forbidding Hamilton cycles in uniform hypergraphs

Jie Han, Yi Zhao

科研成果: 期刊稿件文章同行评审

13 引用 (Scopus)

摘要

For 1 ≤ d≤ ℓ < k, we give a new lower bound for the minimum d-degree threshold that guarantees a Hamilton ℓ-cycle in k-uniform hypergraphs. When k≥. 4 and d< ℓ = k - 1, this bound is larger than the conjectured minimum d-degree threshold for perfect matchings and thus disproves a well-known conjecture of Rödl and Ruciński. Our (simple) construction generalizes a construction of Katona and Kierstead and the space barrier for Hamilton cycles.

源语言英语
页(从-至)107-115
页数9
期刊Journal of Combinatorial Theory. Series A
143
DOI
出版状态已出版 - 1 10月 2016
已对外发布

指纹

探究 'Forbidding Hamilton cycles in uniform hypergraphs' 的科研主题。它们共同构成独一无二的指纹。

引用此