摘要
For 1 ≤ d≤ ℓ < k, we give a new lower bound for the minimum d-degree threshold that guarantees a Hamilton ℓ-cycle in k-uniform hypergraphs. When k≥. 4 and d< ℓ = k - 1, this bound is larger than the conjectured minimum d-degree threshold for perfect matchings and thus disproves a well-known conjecture of Rödl and Ruciński. Our (simple) construction generalizes a construction of Katona and Kierstead and the space barrier for Hamilton cycles.
源语言 | 英语 |
---|---|
页(从-至) | 107-115 |
页数 | 9 |
期刊 | Journal of Combinatorial Theory. Series A |
卷 | 143 |
DOI | |
出版状态 | 已出版 - 1 10月 2016 |
已对外发布 | 是 |
指纹
探究 'Forbidding Hamilton cycles in uniform hypergraphs' 的科研主题。它们共同构成独一无二的指纹。引用此
Han, J., & Zhao, Y. (2016). Forbidding Hamilton cycles in uniform hypergraphs. Journal of Combinatorial Theory. Series A, 143, 107-115. https://doi.org/10.1016/j.jcta.2016.05.005