TY - JOUR
T1 - Fluorinated-oligomeric ionic liquids for high-performance wide-temperature solid zinc batteries
AU - Chen, Ze
AU - Liu, Tong
AU - Wei, Zhiquan
AU - Wang, Yiqiao
AU - Chen, Ao
AU - Huang, Zhaodong
AU - Cao, Duanyun
AU - Li, Nan
AU - Zhi, Chunyi
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2025
Y1 - 2025
N2 - Zn-based solid polymer electrolytes (SPEs) hold immense potential for developing high-performance and safe zinc ion batteries (ZIBs) that can operate effectively even at high temperatures. However, typical plasticizers like ionic liquids (ILs) exhibit limitations regarding Zn2+ ion transport and compatibility with the polymer matrix, causing a low Zn2+ transference number (tZn2+) and serious phase separation in SPEs. In this study, we develop a novel fluorinated IL (F-IL) plasticizer containing an imidazole cation with a fluoro alkyl substituent as an extended side chain for zinc-based SPEs. This innovative imidazole cation effectively modifies the Zn2+ solvation structure. It significantly enhances the compatibility between ILs and the polymer matrix, enabling fast Zn2+ ion transport (with a notable tZn2+ of 0.46 and high ionic conductivity of 2.8 × 10−3 S cm−1) when incorporated in SPEs. Using the F-ILs-based SPE, we achieve dendrite-free Zn plating/stripping cycling over 2000 h, even at high temperatures. A Zn‖Cl4Q battery assembled with the designed SPE outperforms other solid ZIBs, demonstrating a wide working temperature range (−15 °C to 120 °C) and a long cycling life (capacity retention 70.9% after 2000 cycles at 90 °C). In addition, the pouch cell exhibits a remarkable shelf life (90 days) and a low self-discharge rate (capacity loss of 0.09% per day) at 60 °C, thanks to the high thermal and chemical stability of the SPE during operation. The F-IL-based SPE, with its advanced ion transport structure, provides solid ZIBs with significant performance improvement, high safety, and enduring durability.
AB - Zn-based solid polymer electrolytes (SPEs) hold immense potential for developing high-performance and safe zinc ion batteries (ZIBs) that can operate effectively even at high temperatures. However, typical plasticizers like ionic liquids (ILs) exhibit limitations regarding Zn2+ ion transport and compatibility with the polymer matrix, causing a low Zn2+ transference number (tZn2+) and serious phase separation in SPEs. In this study, we develop a novel fluorinated IL (F-IL) plasticizer containing an imidazole cation with a fluoro alkyl substituent as an extended side chain for zinc-based SPEs. This innovative imidazole cation effectively modifies the Zn2+ solvation structure. It significantly enhances the compatibility between ILs and the polymer matrix, enabling fast Zn2+ ion transport (with a notable tZn2+ of 0.46 and high ionic conductivity of 2.8 × 10−3 S cm−1) when incorporated in SPEs. Using the F-ILs-based SPE, we achieve dendrite-free Zn plating/stripping cycling over 2000 h, even at high temperatures. A Zn‖Cl4Q battery assembled with the designed SPE outperforms other solid ZIBs, demonstrating a wide working temperature range (−15 °C to 120 °C) and a long cycling life (capacity retention 70.9% after 2000 cycles at 90 °C). In addition, the pouch cell exhibits a remarkable shelf life (90 days) and a low self-discharge rate (capacity loss of 0.09% per day) at 60 °C, thanks to the high thermal and chemical stability of the SPE during operation. The F-IL-based SPE, with its advanced ion transport structure, provides solid ZIBs with significant performance improvement, high safety, and enduring durability.
UR - http://www.scopus.com/inward/record.url?scp=86000157992&partnerID=8YFLogxK
U2 - 10.1039/d4ee05153j
DO - 10.1039/d4ee05153j
M3 - Article
AN - SCOPUS:86000157992
SN - 1754-5692
JO - Energy and Environmental Science
JF - Energy and Environmental Science
ER -