Few-shot human motion prediction via learning novel motion dynamics

Chuanqi Zang*, Mingtao Pei, Yu Kong

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

18 引用 (Scopus)

摘要

Human motion prediction is a task where we anticipate future motion based on past observation. Previous approaches rely on the access to large datasets of skeleton data, and thus are difficult to be generalized to novel motion dynamics with limited training data. In our work, we propose a novel approach named Motion Prediction Network (MoPredNet) for few-short human motion prediction. MoPredNet can be adapted to predicting new motion dynamics using limited data, and it elegantly captures long-term dependency in motion dynamics. Specifically, MoPredNet dynamically selects the most informative poses in the streaming motion data as masked poses. In addition, MoPredNet improves its encoding capability of motion dynamics by adaptively learning spatio-temporal structure from the observed poses and masked poses. We also propose to adapt MoPredNet to novel motion dynamics based on accumulated motion experiences and limited novel motion dynamics data. Experimental results show that our method achieves better performance over state-of-the-art methods in motion prediction.

源语言英语
主期刊名Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
编辑Christian Bessiere
出版商International Joint Conferences on Artificial Intelligence
846-852
页数7
ISBN(电子版)9780999241165
出版状态已出版 - 2020
活动29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, 日本
期限: 1 1月 2021 → …

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
2021-January
ISSN(印刷版)1045-0823

会议

会议29th International Joint Conference on Artificial Intelligence, IJCAI 2020
国家/地区日本
Yokohama
时期1/01/21 → …

指纹

探究 'Few-shot human motion prediction via learning novel motion dynamics' 的科研主题。它们共同构成独一无二的指纹。

引用此