TY - JOUR
T1 - Ferritin versus Liposomes
T2 - A Comparative Analysis of Protein- and Lipid-Based Drug Delivery Systems
AU - Liu, Yang
AU - Zhu, Feiyan
AU - He, Jiuyang
AU - Liang, Minmin
N1 - Publisher Copyright:
© 2025 American Chemical Society.
PY - 2025
Y1 - 2025
N2 - Drug delivery systems (DDSs) are crucial for the controlled release and targeted delivery of therapeutic agents, enhancing the stability and specificity of small molecules, nucleic acids, or peptides and addressing challenges such as drug instability and poor tissue targeting, particularly in oncology. Over the past few decades, liposomes have become one of the most widely used DDSs due to their unique physicochemical properties and biocompatibility. In the 1990s, liposomes were approved by the FDA as the first nanomedicine for disease treatment. Ferritin, a natural protein with a hollow nanocage structure, shares many similarities in architecture and functionality with liposomes. As an innovative DDS, ferritin offers distinct advantages including inherent tumor-targeting capabilities and exceptional biocompatibility. Liposomes and ferritin represent, respectively, established and emerging approaches in drug delivery, both excelling in key features like encapsulation efficiency and biocompatibility, which align with the standards for pharmaceutical carriers. While liposomal formulations have been clinically used, challenges such as precision targeting remain unresolved. In contrast, although ferritins hold considerable promise for drug delivery, they have not yet been implemented in clinical practice. In this review, we provide a comprehensive analysis of ferritins and liposomes as drug delivery vehicles, evaluating their drug-loading capacities, tumor-targeting capabilities, biocompatibility, and therapeutic potential. On the basis of a comparison of their intended applications and inherent limitations in the context of current treatment strategies, ferritin is expected to be an ideal delivery vehicle for tumor-targeted therapy and a strong candidate for clinical translation in the near future.
AB - Drug delivery systems (DDSs) are crucial for the controlled release and targeted delivery of therapeutic agents, enhancing the stability and specificity of small molecules, nucleic acids, or peptides and addressing challenges such as drug instability and poor tissue targeting, particularly in oncology. Over the past few decades, liposomes have become one of the most widely used DDSs due to their unique physicochemical properties and biocompatibility. In the 1990s, liposomes were approved by the FDA as the first nanomedicine for disease treatment. Ferritin, a natural protein with a hollow nanocage structure, shares many similarities in architecture and functionality with liposomes. As an innovative DDS, ferritin offers distinct advantages including inherent tumor-targeting capabilities and exceptional biocompatibility. Liposomes and ferritin represent, respectively, established and emerging approaches in drug delivery, both excelling in key features like encapsulation efficiency and biocompatibility, which align with the standards for pharmaceutical carriers. While liposomal formulations have been clinically used, challenges such as precision targeting remain unresolved. In contrast, although ferritins hold considerable promise for drug delivery, they have not yet been implemented in clinical practice. In this review, we provide a comprehensive analysis of ferritins and liposomes as drug delivery vehicles, evaluating their drug-loading capacities, tumor-targeting capabilities, biocompatibility, and therapeutic potential. On the basis of a comparison of their intended applications and inherent limitations in the context of current treatment strategies, ferritin is expected to be an ideal delivery vehicle for tumor-targeted therapy and a strong candidate for clinical translation in the near future.
UR - http://www.scopus.com/inward/record.url?scp=85217431866&partnerID=8YFLogxK
U2 - 10.1021/acs.bioconjchem.4c00576
DO - 10.1021/acs.bioconjchem.4c00576
M3 - Review article
AN - SCOPUS:85217431866
SN - 1043-1802
JO - Bioconjugate Chemistry
JF - Bioconjugate Chemistry
ER -