FedABC: Targeting Fair Competition in Personalized Federated Learning

Dui Wang, Li Shen, Yong Luo, Han Hu, Kehua Su*, Yonggang Wen, Dacheng Tao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Federated learning aims to collaboratively train models without accessing their client's local private data. The data may be Non-IID for different clients and thus resulting in poor performance. Recently, personalized federated learning (PFL) has achieved great success in handling Non-IID data by enforcing regularization in local optimization or improving the model aggregation scheme on the server. However, most of the PFL approaches do not take into account the unfair competition issue caused by the imbalanced data distribution and lack of positive samples for some classes in each client. To address this issue, we propose a novel and generic PFL framework termed Federated Averaging via Binary Classification, dubbed FedABC. In particular, we adopt the “one-vs-all” training strategy in each client to alleviate the unfair competition between classes by constructing a personalized binary classification problem for each class. This may aggravate the class imbalance challenge and thus a novel personalized binary classification loss that incorporates both the under-sampling and hard sample mining strategies is designed. Extensive experiments are conducted on two popular datasets under different settings, and the results demonstrate that our FedABC can significantly outperform the existing counterparts.

源语言英语
主期刊名AAAI-23 Technical Tracks 8
编辑Brian Williams, Yiling Chen, Jennifer Neville
出版商AAAI press
10095-10103
页数9
ISBN(电子版)9781577358800
出版状态已出版 - 27 6月 2023
活动37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, 美国
期限: 7 2月 202314 2月 2023

出版系列

姓名Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
37

会议

会议37th AAAI Conference on Artificial Intelligence, AAAI 2023
国家/地区美国
Washington
时期7/02/2314/02/23

指纹

探究 'FedABC: Targeting Fair Competition in Personalized Federated Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此