摘要
Liver segmentation is a significant processing technique for computer-Assisted diagnosis. This method has attracted considerable attention and achieved effective result. However, liver segmentation using computed tomography (CT) images remains a challenging task because of the low contrast between the liver and adjacent organs. This paper proposes a feature-learning-based random walk method for liver segmentation using CT images. Four texture features were extracted and then classified to determine the classification probability corresponding to the test images. Seed points on the original test image were automatically selected and further used in the random walk (RW) algorithm to achieve comparable results to previous segmentation methods.
源语言 | 英语 |
---|---|
文章编号 | e0164098 |
期刊 | PLoS ONE |
卷 | 11 |
期 | 11 |
DOI | |
出版状态 | 已出版 - 11月 2016 |