Fe-Functionalized α-Fe2O3/ZnO Nanocages for ppb-Level Acetone Gas Sensing

Dandan Liu, Xueyan Li, You Li, Shu Yin, Jiajia Liu*, Jiatao Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

18 引用 (Scopus)

摘要

Highly sensitive and selective gas sensors hold great potential in disease diagnosis. However, the rational design of non-noble-metal-based, high-efficiency sensing materials for trace gas detection remains a crucial challenge. Herein, a chemiresistive sensor that can detect parts per billion (ppb)-level acetone was realized based on three-dimensional (3D) α-Fe2O3/ZnO nanocages, which were achieved by a simple encapsulation and calcination process. In particular, we found that Fe species play an intriguing role in the evolution from Fe-ZIF-8 to heterogeneous α-Fe2O3/ZnO nanocages. α-Fe2O3 functionalization empowered the α-Fe2O3/ZnO nanocage-based sensor with a high response of 45.25, an ultrafast response (7 s) and recovery (6 s) time toward 50 ppm of acetone, a limit of detection (LOD) of 500 ppb, and superior selectivity. Moreover, in situ Fourier transform infrared analysis allowed one to devise of an acetone sensing mechanism for dissociative acetone adsorbed on the α-Fe2O3/ZnO nanocages, involving the first oxidation of acetone to form formate and acetate complexes, followed by further oxidation to CO2 and H2O. The enhanced acetone sensing performance can be attributed to the high specific surface area, abundant oxygen vacancies, well-tuned heterojunction, and optimal acid-base property.

源语言英语
页(从-至)5745-5755
页数11
期刊ACS Applied Nano Materials
5
4
DOI
出版状态已出版 - 22 4月 2022

指纹

探究 'Fe-Functionalized α-Fe2O3/ZnO Nanocages for ppb-Level Acetone Gas Sensing' 的科研主题。它们共同构成独一无二的指纹。

引用此