Fault prediction algorithm of slow variable signal based on multidimensional data driving

Yifan Li, Ping Song, Hongbo Liu, Chuangbo Hao

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

With the increase of fault history data, the problem of high precision and long-time fault prediction under different failure modes is presented. We propose a multi-channel fusion fault prediction algorithm based on Long Short-Term Memory (LSTM) deep network. The prediction ability of the algorithm increases with the increase of training samples. Based on the analysis of the influence of different network parameters on the prediction accuracy, the optimal network parameters are selected to realize the long-time and high-precision fault prediction. It can recognize fault prediction without historical data. And it can integrate multi-channel information for off-line training to achieve the goal of self-increasing fault prediction ability.

源语言英语
主期刊名2022 Cross Strait Radio Science and Wireless Technology Conference, CSRSWTC 2022
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781665460965
DOI
出版状态已出版 - 2022
活动2022 Cross Strait Radio Science and Wireless Technology Conference, CSRSWTC 2022 - Haidian, 中国
期限: 17 12月 202218 12月 2022

出版系列

姓名2022 Cross Strait Radio Science and Wireless Technology Conference, CSRSWTC 2022

会议

会议2022 Cross Strait Radio Science and Wireless Technology Conference, CSRSWTC 2022
国家/地区中国
Haidian
时期17/12/2218/12/22

指纹

探究 'Fault prediction algorithm of slow variable signal based on multidimensional data driving' 的科研主题。它们共同构成独一无二的指纹。

引用此