摘要
In this paper, a fall detection method is proposed by employing deep learning and multi-sensors fusion. Continuous wave radar and optical cameras are used simultaneously to capture human action information. Based on the abstraction of both the microwave and optical characteristics of the captured information, multiple convolutional neural network (CNN) is used to realize the information training and fall action recognition. Due to the fusion of multi-sensor information, the overall performance of the fall detection system can be improved remarkably. Detailed experiments are given to validate the proposed method.
源语言 | 英语 |
---|---|
主期刊名 | 2018 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2018 |
出版商 | Institute of Electrical and Electronics Engineers Inc. |
ISBN(电子版) | 9781538641958 |
DOI | |
出版状态 | 已出版 - 28 11月 2018 |
活动 | 2018 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2018 - San Diego, 美国 期限: 23 7月 2018 → 27 7月 2018 |
出版系列
姓名 | 2018 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2018 |
---|
会议
会议 | 2018 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2018 |
---|---|
国家/地区 | 美国 |
市 | San Diego |
时期 | 23/07/18 → 27/07/18 |
指纹
探究 'Fall detection using convolutional neural network with multi-sensor fusion' 的科研主题。它们共同构成独一无二的指纹。引用此
Zhou, X., Qian, L. C., You, P. J., Ding, Z. G., & Han, Y. Q. (2018). Fall detection using convolutional neural network with multi-sensor fusion. 在 2018 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2018 文章 8551564 (2018 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2018). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICMEW.2018.8551564