摘要
Three-layer silicon carbide (SiC) cladding architectures are considered to be promising materials for current light-water nuclear reactors. Herein, a novel processing approach was proposed to fabricate dense three-layer SiC tubes by introducing SiC nanowires (NWs) on the graphite rod, which resulted in change in the valley-peak structure of SiCf tubular preform. A dense three-layer-NWs SiC cladding tube, consisting of a chemical vapor infiltration (CVI)-SiC inner layer, a CVI-SiCf/SiC composite layer, and a CVI-SiC outer layer, was obtained through CVI process. Microstructure and hoop strength of the as-obtained three-layer-NWs SiC cladding tube were systematically investigated. By avoiding delamination of the layers and reducing the pores, the three-layer-NWs SiC cladding tube exhibited an average hoop strength of 316.6 MPa with a Weibull modulus of 11.55.
源语言 | 英语 |
---|---|
页(从-至) | 6939-6945 |
页数 | 7 |
期刊 | Journal of the American Ceramic Society |
卷 | 102 |
期 | 11 |
DOI | |
出版状态 | 已出版 - 1 11月 2019 |