TY - GEN
T1 - Extended State Observer-Based Position Sensorless Control for Automotive Ultra-high-Speed PMSM
AU - Xu, Yao
AU - Lin, Cheng
AU - Xing, Jilei
AU - Li, Xichen
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
PY - 2023
Y1 - 2023
N2 - Ultra-high-speed permanent magnet synchronous motor (PMSM) is widely used to drive fuel cell air compressors and electric turbochargers, and its high efficiency and stable control is an effective way to improve the power density of automotive power systems. Considering the installation space and detection reliability, the automotive ultra-high-speed PMSM is generally not equipped with a rotor position sensor, and the required high-precision rotor position information is obtained by a position sensorless control algorithm. The traditional position sensorless control method based on the extended back electromotive force (EEMF) uses the PI observation error compensator to estimate the EEMF for position estimation. The PI parameter tuning is complicated, and the position estimation error becomes larger with the motor parameters change, which is easy to cause control failure. Therefore, a novel EEMF-based position sensorless control method based on the extended state observer (ESO) is proposed in this paper. Using the ultra-local model of the EEMF, the disturbance term is observed by designing the ESO. The estimated EEMF used for position estimation is calculated by a tracking differentiator. This method is simple to be tuned and can not only obtain more accurate rotor position information but also suppress the disturbance of motor parameters to a certain extent. Finally, the effectiveness of the proposed position sensorless scheme is verified on a 15 kW ultra-high-speed PMSM by simulation tests.
AB - Ultra-high-speed permanent magnet synchronous motor (PMSM) is widely used to drive fuel cell air compressors and electric turbochargers, and its high efficiency and stable control is an effective way to improve the power density of automotive power systems. Considering the installation space and detection reliability, the automotive ultra-high-speed PMSM is generally not equipped with a rotor position sensor, and the required high-precision rotor position information is obtained by a position sensorless control algorithm. The traditional position sensorless control method based on the extended back electromotive force (EEMF) uses the PI observation error compensator to estimate the EEMF for position estimation. The PI parameter tuning is complicated, and the position estimation error becomes larger with the motor parameters change, which is easy to cause control failure. Therefore, a novel EEMF-based position sensorless control method based on the extended state observer (ESO) is proposed in this paper. Using the ultra-local model of the EEMF, the disturbance term is observed by designing the ESO. The estimated EEMF used for position estimation is calculated by a tracking differentiator. This method is simple to be tuned and can not only obtain more accurate rotor position information but also suppress the disturbance of motor parameters to a certain extent. Finally, the effectiveness of the proposed position sensorless scheme is verified on a 15 kW ultra-high-speed PMSM by simulation tests.
KW - extended state observer
KW - sensorless control
KW - tracking differentiator
KW - ultra-high-speed PMSM
KW - ultra-local model
UR - http://www.scopus.com/inward/record.url?scp=85161381834&partnerID=8YFLogxK
U2 - 10.1007/978-981-99-1365-7_55
DO - 10.1007/978-981-99-1365-7_55
M3 - Conference contribution
AN - SCOPUS:85161381834
SN - 9789819913640
T3 - Lecture Notes in Electrical Engineering
SP - 787
EP - 799
BT - Proceedings of China SAE Congress 2022
PB - Springer Science and Business Media Deutschland GmbH
T2 - Society of Automotive Engineers - China Congress, SAE-China 2022
Y2 - 22 November 2022 through 24 November 2022
ER -