摘要
Calendering is an essential step in the manufacturing process of lithium-ion batteries. However, the intrusion of active particles into metal foil can damage the current collector during calendering. Here, we investigate the changes in surface morphology and the tensile properties of current collector after calendering. The damage mechanisms of tensile strength reduction for current collector due to compressive pressure are revealed by combining the calendering tests, tensile experiments, and simulations. Specifically, the DEM-FEM scheme is proposed, which combines the discrete element method (DEM) with the finite element method (FEM) to characterize the mechanical behavior of current collectors after the intrusion of active particles. The results show that the current collectors become more brittle and vulnerable with the increase of compressive pressure. Finally, the failure phase diagrams are presented during the winding and electrochemical processes. This study can reveal the failure behavior of current collectors and guides the electrode manufacturing optimization.
源语言 | 英语 |
---|---|
文章编号 | 121904 |
期刊 | Applied Energy |
卷 | 351 |
DOI | |
出版状态 | 已出版 - 1 12月 2023 |