Experimental and numerical efforts to improve oxygen mass transport in porous catalyst layer of proton exchange membrane fuel cells

Zhaojing Ni, Kai Han, Xianchun Chen, Lu Wang*, Bo Wang*

*此作品的通讯作者

科研成果: 期刊稿件文献综述同行评审

3 引用 (Scopus)

摘要

The effective management of oxygen transport resistance (OTR) within the cathode catalyst layer (CCL) is crucial for achieving a high catalyst performance at low platinum (Pt) loading. Over the past two decades, significant advancements have been made in the development of various high active platinum-based catalysts, aiming at enhancing oxygen mass transport and the oxygen reduction reaction (ORR). However, experimental investigations of transport processes in porous media are often computational costs and restrained by limitations in in-situ measurement capabilities, as well as spatial and temporal resolution. Fortunately, numerical simulation provides a valuable alternative for unveiling the intricate relationship between local transport properties and overall cell performance that remain unresolved or uncoupled through experimental approach. In this review, we elucidate the primary experimental and numerical efforts undertaken to improve OTR. We consolidate the available literature on OTR values and perform a quantitative comparison of the effectiveness of different strategies in mitigating OTR. Furthermore, we analyze the intrinsic limitations and challenges associated with current experimental and numerical methods. Finally, we outline future prospect for advancements in both experimental techniques and modelling methods.

源语言英语
文章编号e9120085
期刊Nano Research Energy
2
4
DOI
出版状态已出版 - 12月 2023

指纹

探究 'Experimental and numerical efforts to improve oxygen mass transport in porous catalyst layer of proton exchange membrane fuel cells' 的科研主题。它们共同构成独一无二的指纹。

引用此