摘要
In this paper, we construct a family of traveling-rotating helical symmetry vortex patches to the incompressible Euler equations in R3, which tend asymptotically to singular helical vortex filament evolving by the binormal curvature flow. The construction is achieved by maximizing the energy functional over certain constraint and studying carefully asymptotic behavior of maximizers.
源语言 | 英语 |
---|---|
页(从-至) | 459-495 |
页数 | 37 |
期刊 | Journal of Differential Equations |
卷 | 418 |
DOI | |
出版状态 | 已出版 - 15 2月 2025 |
指纹
探究 'Existence of helical symmetry vortex patch with small cross-section for the incompressible Euler equations in R3' 的科研主题。它们共同构成独一无二的指纹。引用此
Cao, D., Li, R., Qin, G., & Wan, J. (2025). Existence of helical symmetry vortex patch with small cross-section for the incompressible Euler equations in R3. Journal of Differential Equations, 418, 459-495. https://doi.org/10.1016/j.jde.2024.11.044