Excellent combination of compressive strength and ductility of (CoCrFeNi)x(Co0.26Cr0.07Fe0.16Ni0.31Hf0.4) high-entropy alloys

Tongbin Xie, Zhiping Xiong*, Zhe Liu, Guanyu Deng, Xingwang Cheng

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

27 引用 (Scopus)

摘要

Instead of conventional CoCrFeNiHfx high-entropy alloys (HEAs), we investigated the evolution of microstructure and compressive mechanical properties of (CoCrFeNi)x(Co0.26Cr0.07Fe0.16Ni0.31Hf0.4) HEAs with varying x. Increasing x from 0.5 to 1.0, the microstructure changes from hyper-eutectic ones consisting of primary Laves phase and eutectic structure (x < 0.7), firstly to eutectic ones consisting of alternative FCC and Laves phase (x = 0.7 and 0.8), and finally to hypo-eutectic ones consisting of primary FCC phase and eutectic structure (x > 0.8). Interestingly, two different morphologies of eutectic microstructures are observed when x = 0.7 and 0.8 probably due to different fusion entropies of each phase. Increasing x from 0.5 to 1.0 reduces the yield strength from 1661 ± 64 to 688 ± 17 MPa but enhances the compressive ductility due to an increased fraction of soft FCC phase from ~0.39 to ~0.74. The second phase strengthening is the main strengthening mechanism. Importantly, when x = 0.9 and 1.0, these two alloys are not fractured when the strain reaches 0.5, one of which shows a large yield strength of 1028 ± 45 MPa (x = 0.9). Compared with conventional CoCrFeNiHfx, the studied HEAs exhibit a much better combination of compressive strength and ductility.

源语言英语
文章编号109569
期刊Materials and Design
202
DOI
出版状态已出版 - 4月 2021

指纹

探究 'Excellent combination of compressive strength and ductility of (CoCrFeNi)x(Co0.26Cr0.07Fe0.16Ni0.31Hf0.4) high-entropy alloys' 的科研主题。它们共同构成独一无二的指纹。

引用此