Evolving Molecular Graph Neural Networks with Hierarchical Evaluation Strategy

Yingfang Yuan, Wenjun Wang*, Xin Li, Kefan Chen, Yonghan Zhang, Wei Pang*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Graph representation of molecular data enables extracting stereoscopic features, with graph neural networks (GNNs) excelling in molecular property prediction. However, selecting optimal hyper-parameters for GNN construction is challenging due to the vast search space and high computational costs. To tackle this, we introduce a hierarchical evaluation strategy integrated with a genetic algorithm (HESGA). HESGA combines full and fast evaluations of GNNs. Full evaluation involves training a GNN with preset epochs, using root mean square error (RMSE) to measure hyperparameter quality. Fast evaluation interrupts training early, using the difference in RMSE values as a score for GNN potential. HESGA integrates these evaluations, with fast evaluation guiding candidate selection for full evaluation, maintaining elite individuals. Applying HESGA to optimise deep GNNs for molecular property prediction, experimental results on three datasets demonstrate its superiority over traditional Bayesian optimisation, Tree-structured Parzen Estimator, and CMA-ES. HESGA efficiently navigates the complex GNN hyperparameter space, offering a promising approach for molecular property prediction.

源语言英语
主期刊名GECCO 2024 - Proceedings of the 2024 Genetic and Evolutionary Computation Conference
出版商Association for Computing Machinery, Inc
1417-1425
页数9
ISBN(电子版)9798400704949
DOI
出版状态已出版 - 14 7月 2024
活动2024 Genetic and Evolutionary Computation Conference, GECCO 2024 - Melbourne, 澳大利亚
期限: 14 7月 202418 7月 2024

出版系列

姓名GECCO 2024 - Proceedings of the 2024 Genetic and Evolutionary Computation Conference

会议

会议2024 Genetic and Evolutionary Computation Conference, GECCO 2024
国家/地区澳大利亚
Melbourne
时期14/07/2418/07/24

指纹

探究 'Evolving Molecular Graph Neural Networks with Hierarchical Evaluation Strategy' 的科研主题。它们共同构成独一无二的指纹。

引用此