Evidential Reasoning for Video Anomaly Detection

Che Sun, Yunde Jia, Yuwei Wu*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

Video anomaly detection aims to discriminate events that deviate from normal patterns in a video. Modeling the decision boundaries of anomalies is challenging, due to the uncertainty in the probability of deviating from normal patterns. In this paper, we propose a deep evidential reasoning method that explicitly learns the uncertainty to model the boundaries. Our method encodes various visual cues as evidences representing potential deviations, assigns beliefs to the predicted probability of deviating from normal patterns based on the evidences, and estimates the uncertainty from the remained beliefs to model the boundaries. To do this, we build a deep evidential reasoning network to encode evidence vectors and estimate uncertainty by learning evidence distributions and deriving beliefs from the distributions. We introduce an unsupervised strategy to train our network by minimizing an energy function of the deep Gaussian mixed model (GMM). Experimental results show that our uncertainty score is beneficial for modeling the boundaries of video anomalies on three benchmark datasets.

源语言英语
主期刊名MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
出版商Association for Computing Machinery, Inc
2106-2114
页数9
ISBN(电子版)9781450392037
DOI
出版状态已出版 - 10 10月 2022
活动30th ACM International Conference on Multimedia, MM 2022 - Lisboa, 葡萄牙
期限: 10 10月 202214 10月 2022

出版系列

姓名MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia

会议

会议30th ACM International Conference on Multimedia, MM 2022
国家/地区葡萄牙
Lisboa
时期10/10/2214/10/22

指纹

探究 'Evidential Reasoning for Video Anomaly Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此