Evaluation of a semi-Autonomous lane departure correction system using naturalistic driving data

Ding Zhao*, Wenshuo Wang, David J. LeBlanc

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Evaluating the effectiveness and benefits of driver assistance systems is essential for improving the system performance. In this paper, we propose an efficient evaluation method for a semi-Autonomous lane departure correction system. To achieve this, we apply a bounded Gaussian mixture model to describe drivers stochastic lane departure behavior learned from naturalistic driving data, which can regenerate departure behaviors to evaluate the lane departure correction system. In the stochastic lane departure model, we conduct a dimension reduction to reduce the computation cost. Finally, to show the advantages of our proposed evaluation approach, we compare steering systems with and without lane departure assistance based on the stochastic lane departure model. The simulation results show that the proposed method can effectively evaluate the lane departure correction system.

源语言英语
主期刊名IV 2017 - 28th IEEE Intelligent Vehicles Symposium
出版商Institute of Electrical and Electronics Engineers Inc.
926-932
页数7
ISBN(电子版)9781509048045
DOI
出版状态已出版 - 28 7月 2017
活动28th IEEE Intelligent Vehicles Symposium, IV 2017 - Redondo Beach, 美国
期限: 11 6月 201714 6月 2017

出版系列

姓名IEEE Intelligent Vehicles Symposium, Proceedings

会议

会议28th IEEE Intelligent Vehicles Symposium, IV 2017
国家/地区美国
Redondo Beach
时期11/06/1714/06/17

指纹

探究 'Evaluation of a semi-Autonomous lane departure correction system using naturalistic driving data' 的科研主题。它们共同构成独一无二的指纹。

引用此