Evaluation and ANN-based prediction on functional parameters of surface roughness in precision grinding of cast iron

B. Zhao, S. Zhang*, J. F. Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Three-dimensional surface roughness parameters are widely applied to characterize frictional and lubricating properties, corrosion resistance, fatigue strength of surfaces. Among them, the functional parameters of surface roughness, such as Sbi, Sci, and Svi, are used to evaluate bearing and fluid retention properties of surfaces. In this study, the effects of grinding parameters, including wheel linear speed (Vs), workpiece linear speed (Vw), grinding depth (ap), longitudinal feed rate (fa), and dressing rate (F), on functional parameters were studied in grinding of cast iron. An artificial neural network (ANN) model was developed for predicting the functional parameters of three-dimensional surface roughness. The inputs of the ANN models were grinding parameters (Vs, Vw, ap, fa, F), and the output parameters of the models were functional parameters of surface roughness (Sbi, Sci, Svi). With small errors (e.g MSE = 0.09%, 0.61%, and 0.0014%.), the ANN-based models are considered sufficiently accurate to predict functional parameters of surface roughness in grinding of cast iron.

源语言英语
主期刊名Advances in Abrasive Technology XVII
编辑Jiwang Yan, Hideki Aoyama, Akinori Yui
出版商Trans Tech Publications Ltd.
166-171
页数6
ISBN(电子版)9783038352211
DOI
出版状态已出版 - 2014
已对外发布
活动17th International Symposium on Advances in Abrasive Technology, ISAAT 2014 - Kailua, 美国
期限: 22 9月 201425 9月 2014

出版系列

姓名Advanced Materials Research
1017
ISSN(印刷版)1022-6680
ISSN(电子版)1662-8985

会议

会议17th International Symposium on Advances in Abrasive Technology, ISAAT 2014
国家/地区美国
Kailua
时期22/09/1425/09/14

指纹

探究 'Evaluation and ANN-based prediction on functional parameters of surface roughness in precision grinding of cast iron' 的科研主题。它们共同构成独一无二的指纹。

引用此