Evaluating Model Predictive Path following and Yaw Stability Controllers for Over-Actuated Autonomous Electric Vehicles

Wenliang Zhang, Zhenpo Wang*, Lars Drugge, Mikael Nybacka

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

64 引用 (Scopus)

摘要

Active safety systems are of significant importance for autonomous vehicles operating in safety-critical situations like an obstacle-avoidance manoeuvre with high vehicle speed or poor road condition. However, a conventional electronic stability control system, may not always yield desired path following and yaw stability performance in such circumstances merely through brake intervention. This paper pursues a detailed investigation on utilising model predictive control (MPC) and torque vectoring for path following and yaw stability control of over-actuated autonomous electric vehicles (AEVs) in dangerous double lane change manoeuvre. The control problem of the AEV is formulated based on MPC by utilising active front steering and torque vectoring, and constraints are imposed explicitly on yaw rate and sideslip angle to ensure yaw stability. Four MPC-based controllers are designed based on double-track vehicle models. Specifically, they include two one-level controllers, i.e. one with torque vectoring and one with equal torque allocation, and two two-level controllers, i.e. one with optimisation-based torque allocation and one with rule-based allocation. These controllers are assessed extensively, with respect to passing velocity, tracking accuracy, tyre utilisation and robustness. The effect of horizon length on the control performance and computational efficiency is also investigated.

源语言英语
文章编号9222046
页(从-至)12807-12821
页数15
期刊IEEE Transactions on Vehicular Technology
69
11
DOI
出版状态已出版 - 11月 2020

指纹

探究 'Evaluating Model Predictive Path following and Yaw Stability Controllers for Over-Actuated Autonomous Electric Vehicles' 的科研主题。它们共同构成独一无二的指纹。

引用此