摘要
3D visual fatigue is one of the major factors that hinder the development of virtual reality contents towards larger population. We proposed an EEG-based self-attention CNN model to evaluate user's 3D visual fatigue in an end-to-end fashion. We adopted a wavelet-based convolution to extract spatiotemporal information and prevent overfitting. Besides, a self-attention layer was added to the feature extractor backbone to cope with the subject-variation problem in EEG-decoding. The proposed method is compared with four state-of-the-art methods, and the results demonstrate that our model has the best performance among all methods in subject-dependent and cross-subject scenarios.
源语言 | 英语 |
---|---|
主期刊名 | Proceedings - 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2022 |
出版商 | Institute of Electrical and Electronics Engineers Inc. |
页 | 784-785 |
页数 | 2 |
ISBN(电子版) | 9781665484022 |
DOI | |
出版状态 | 已出版 - 2022 |
活动 | 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2022 - Virtual, Online, 新西兰 期限: 12 3月 2022 → 16 3月 2022 |
出版系列
姓名 | Proceedings - 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2022 |
---|
会议
会议 | 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2022 |
---|---|
国家/地区 | 新西兰 |
市 | Virtual, Online |
时期 | 12/03/22 → 16/03/22 |
指纹
探究 'Evaluating 3D Visual Fatigue Induced by VR Headset Using EEG and Self-attention CNN' 的科研主题。它们共同构成独一无二的指纹。引用此
Hu, H., Liu, Y., & Yue, K. (2022). Evaluating 3D Visual Fatigue Induced by VR Headset Using EEG and Self-attention CNN. 在 Proceedings - 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2022 (页码 784-785). (Proceedings - 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2022). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/VRW55335.2022.00243