TY - GEN
T1 - Estimating Fine-Grained Noise Model via Contrastive Learning
AU - Zou, Yunhao
AU - Fu, Ying
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Image denoising has achieved unprecedented progress as great efforts have been made to exploit effective deep denoisers. To improve the denoising performance in real-world, two typical solutions are used in recent trends: devising better noise models for the synthesis of more realistic training data, and estimating noise level function to guide non-blind denoisers. In this work, we combine both noise modeling and estimation, and propose an innovative noise model estimation and noise synthesis pipeline for realistic noisy image generation. Specifically, our model learns a noise estimation model with fine-grained statistical noise model in a contrastive manner. Then, we use the estimated noise parameters to model camera-specific noise distribution, and synthesize realistic noisy training data. The most striking thing for our work is that by calibrating noise models of several sensors, our model can be extended to predict other cameras. In other words, we can estimate camera-specific noise models for unknown sensors with only testing images, without laborious calibration frames or paired noisy/clean data. The proposed pipeline endows deep denoisers with competitive performances with state-of-the-art real noise modeling methods.
AB - Image denoising has achieved unprecedented progress as great efforts have been made to exploit effective deep denoisers. To improve the denoising performance in real-world, two typical solutions are used in recent trends: devising better noise models for the synthesis of more realistic training data, and estimating noise level function to guide non-blind denoisers. In this work, we combine both noise modeling and estimation, and propose an innovative noise model estimation and noise synthesis pipeline for realistic noisy image generation. Specifically, our model learns a noise estimation model with fine-grained statistical noise model in a contrastive manner. Then, we use the estimated noise parameters to model camera-specific noise distribution, and synthesize realistic noisy training data. The most striking thing for our work is that by calibrating noise models of several sensors, our model can be extended to predict other cameras. In other words, we can estimate camera-specific noise models for unknown sensors with only testing images, without laborious calibration frames or paired noisy/clean data. The proposed pipeline endows deep denoisers with competitive performances with state-of-the-art real noise modeling methods.
KW - Computational photography
KW - Low-level vision
KW - Physics-based vision and shape-from-X
UR - http://www.scopus.com/inward/record.url?scp=85141815142&partnerID=8YFLogxK
U2 - 10.1109/CVPR52688.2022.01235
DO - 10.1109/CVPR52688.2022.01235
M3 - Conference contribution
AN - SCOPUS:85141815142
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 12672
EP - 12681
BT - Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PB - IEEE Computer Society
T2 - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Y2 - 19 June 2022 through 24 June 2022
ER -