ESNet: An Efficient Segmentation Network for Medical Image Segmentation

Hao Li, Zigeng Yan, Di Hua Zhai*, Yuanqing Xia

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

The automatic medical image segmentation technology based on deep learning has achieved high accuracy, but there is a dilemma that the parameters are huge and difficult to clinical application. To solve this problem, we propose an Efficient Segmentation Network (ESNet) model that saves parameters and floating point of operations while ensuring segmentation accuracy. We design a powerful feature extraction module DME to construct a hierarchical encoding sub-network to enable our model to have efficient feature learning capabilities, and a feature reuse-based DCD module to design a hierarchical decoding sub-network to effectively utilize the features generated by encoding to refine segmentation. To overcome the semantic gap between encoding and decoding, a conversion module ABT is established based on the idea of dense connection to communicate the encoding sub-network and the decoding sub-network while compensating for the spatial information of the decoding sub-network input. We evaluated our model on two different medical segmentation datasets, the 2018 Lesion Boundary Segmentation challenge and the 2018 Data Science Bowl challenge, achieving the SOTA performance on both Dice and Miou.

源语言英语
主期刊名2023 42nd Chinese Control Conference, CCC 2023
出版商IEEE Computer Society
8276-8281
页数6
ISBN(电子版)9789887581543
DOI
出版状态已出版 - 2023
活动42nd Chinese Control Conference, CCC 2023 - Tianjin, 中国
期限: 24 7月 202326 7月 2023

出版系列

姓名Chinese Control Conference, CCC
2023-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议42nd Chinese Control Conference, CCC 2023
国家/地区中国
Tianjin
时期24/07/2326/07/23

指纹

探究 'ESNet: An Efficient Segmentation Network for Medical Image Segmentation' 的科研主题。它们共同构成独一无二的指纹。

引用此