ESC-MISR: Enhancing Spatial Correlations for Multi-image Super-Resolution in Remote Sensing

Zhihui Zhang, Xiaoshuai Hao, Jianan Li, Jinhui Pang*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Multi-Image Super-Resolution (MISR) is a crucial yet challenging research task in the remote sensing community. In this paper, we address the challenging task of Multi-Image Super-Resolution in Remote Sensing (MISR-RS), aiming to generate a High-Resolution (HR) image from multiple Low-Resolution (LR) images obtained by satellites. Recently, the weak temporal correlations among LR images have attracted increasing attention in the MISR-RS task. However, existing MISR methods treat the LR images as sequences with strong temporal correlations, overlooking spatial correlations and imposing temporal dependencies. To address this problem, we propose a novel end-to-end framework named Enhancing Spatial Correlations in MISR (ESC-MISR), which fully exploits the spatial-temporal relations of multiple images for HR image reconstruction. Specifically, we first introduce a novel fusion module named Multi-Image Spatial Transformer (MIST), which emphasizes parts with clearer global spatial features and enhances the spatial correlations between LR images. Besides, we perform a random shuffle strategy for the sequential inputs of LR images to attenuate temporal dependencies and capture weak temporal correlations in the training stage. Compared with the state-of-the-art methods, our ESC-MISR achieves 0.70 dB and 0.76 dB cPSNR improvements on the two bands of the PROBA-V dataset respectively, demonstrating the superiority of our method.

源语言英语
主期刊名MultiMedia Modeling - 31st International Conference on Multimedia Modeling, MMM 2025, Proceedings
编辑Ichiro Ide, Ioannis Kompatsiaris, Changsheng Xu, Keiji Yanai, Wei-Ta Chu, Naoko Nitta, Michael Riegler, Toshihiko Yamasaki
出版商Springer Science and Business Media Deutschland GmbH
373-387
页数15
ISBN(印刷版)9789819620531
DOI
出版状态已出版 - 2025
活动31st International Conference on Multimedia Modeling, MMM 2025 - Nara, 日本
期限: 8 1月 202510 1月 2025

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
15520 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议31st International Conference on Multimedia Modeling, MMM 2025
国家/地区日本
Nara
时期8/01/2510/01/25

指纹

探究 'ESC-MISR: Enhancing Spatial Correlations for Multi-image Super-Resolution in Remote Sensing' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zhang, Z., Hao, X., Li, J., & Pang, J. (2025). ESC-MISR: Enhancing Spatial Correlations for Multi-image Super-Resolution in Remote Sensing. 在 I. Ide, I. Kompatsiaris, C. Xu, K. Yanai, W.-T. Chu, N. Nitta, M. Riegler, & T. Yamasaki (编辑), MultiMedia Modeling - 31st International Conference on Multimedia Modeling, MMM 2025, Proceedings (页码 373-387). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 卷 15520 LNCS). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-981-96-2054-8_28