摘要
The upconversion luminescence (UCL) in the second near-infrared window (NIR-II) is highly attractive due to its excellent performance in high-resolution bioimaging, anticounterfeiting, and temperature sensing. However, upconvertion nanoparticles (UCNPs) are normally emitted in visible light, potentially impacting the imaging quality. Here, a monochromatic Er3+-rich (NaErF4:x%Yb@NaYF4) nanoparticles with excitation at 1532 nm and emission at 978 nm is proposed, both situated in the NIR-II region. The proper proportion of Yb3+ ions doping has a positive effect on the NIR-II emission, by enhancing the cross relaxation efficiency and accelerating the energy transfer rate. Owing to the interaction between the Er3+ and Yb3+ is inhibited at low temperatures, the UCL emission intensities at visible and NIR-II regions show opposite trend with temperature changing, which establishes a fitting formula to derive temperature from the luminous intensity ratio, promoting the potential application of UCL in NIR-II regions for the temperature sensing.
源语言 | 英语 |
---|---|
文章编号 | 2308748 |
期刊 | Small |
卷 | 20 |
期 | 27 |
DOI | |
出版状态 | 已出版 - 4 7月 2024 |