摘要
Increasing sensitivity and signal to noise ratios of conventional wave sensors is an interesting topic in structural health monitoring, medical imaging, aerospace and nuclear instrumentation. Here, we report the concept of a gradient piezoelectric self-sensing system by integrating shunting circuitry into conventional sensors. By tuning circuit elements properly, both the quality and quantity of the flexural wave measurement data can be significantly increased for new adaptive sensing applications. Through analytical, numerical and experimental studies, we demonstrate that a metamaterial-based sensing system (MBSS) with gradient bending stiffness can be designed by connecting gradient negative capacitance circuits to an array of piezoelectric patches (sensors). Furthermore, we demonstrate that the proposed system can achieve more than two orders of magnitude amplification of flexural wave signals to overcome the detection limit. This research encompasses fundamental advancements in the MBSS with improved performance and functionalities, and will yield significant advances for a range of applications.
源语言 | 英语 |
---|---|
文章编号 | 35048 |
期刊 | Scientific Reports |
卷 | 6 |
DOI | |
出版状态 | 已出版 - 17 10月 2016 |
已对外发布 | 是 |