Enhanced damage mechanism of reinforced concrete targets impacted by reactive PELE: An analytical model and experimental validation

Jiahao Zhang, Mengmeng Guo, Sheng Zhou, Chao Ge, Pengwan Chen, Qingbo Yu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Compared with PELE with inert fillings such as polyethylene and nylon, reactive PELE (RPELE) shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction. In present work, an analytical model describing the jacket deformation and concrete target damage impacted by RPELE was presented, in which the radial rarefaction and filling deflagration reaction were considered. The impact tests of RPELE on concrete target in the 592–1012 m/s were carried out to verify the analytical model. Based on the analytical model, the angle-length evolution mechanism of the jacket bending-curling deformation was revealed, and the concrete target damage was further analyzed. One can find out that the average prediction errors of the front crater, opening and back crater are 6.8%, 8.5% and 7.1%, respectively. Moreover, the effects of radial rarefaction and deflagration were discussed. It was found that the neglect of radial rarefaction overestimates the jacket deformation and concrete target damage, while the deflagration reaction of filling increases the diameter of the front crater, opening and back crater by 25.4%, 24.3% and 31.1%, respectively. The research provides a valuable reference for understanding and predicting the jacket deformation and concrete target damage impacted by RPELE.

源语言英语
期刊Defence Technology
DOI
出版状态已接受/待刊 - 2024

指纹

探究 'Enhanced damage mechanism of reinforced concrete targets impacted by reactive PELE: An analytical model and experimental validation' 的科研主题。它们共同构成独一无二的指纹。

引用此