摘要
Atomic vacancy has been demonstrated to generate new energy states in the bandgap whereby providing more active sites in many electrocatalytic processes. In this work, a novel process is developed to yield both Co and O vacancies in the synthetical Co3O4 nanosheets when subjected to a laser beam. The method, capable of creating both Co and O vacancies and embarking upon the prediction of the number of vacancies generated, is more reliable/controllable over other methods. The coupling of two types of vacancies eases the occurrence of Co3O4 oxidation reaction at a very low overpotential, which then facilities the OER at an overpotential of 290 mV with a small Tafel slope of 76 mV dec−1, much better than the pristine Co3O4 and the benchmark RuO2. DFT calculations suggest that the induced multi- vacancies create trap state in the bandgap of Co3O4 promoting the adsorption capability and advancing the water splitting.
源语言 | 英语 |
---|---|
文章编号 | 105800 |
期刊 | Nano Energy |
卷 | 83 |
DOI | |
出版状态 | 已出版 - 5月 2021 |