Engineering Active-Site-Induced Homogeneous Growth of Polydopamine Nanocontainers on Loading-Enhanced Ultrathin Graphene for Smart Self-Healing Anticorrosion Coatings

Guangyan Chen, Bao Jin, Zhehao Zhang, Jun Zhao, Yunze Li, Yongyong He*, Jianbin Luo

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

19 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 18
  • Captures
    • Readers: 7
  • Mentions
    • News Mentions: 1
see details

摘要

Engineering nanocontainers with encapsulated inhibitors onto graphene has been an emerging technology for developing self-healing anticorrosion coatings. However, the loading contents of inhibitors are commonly limited by inhomogeneous nanostructures of graphene platforms. Here, we propose an activation-induced ultrathin graphene platform (UG-BP) with the homogeneous growth of polydopamine (PDA) nanocontainers encapsulated with benzotriazole (BTA). Ultrathin graphene prepared by catalytic exfoliation and etching activation provides an ideal platform with an ultrahigh specific surface area (1646.8 m2/g) and homogeneous active sites for the growth of PDA nanocontainers, which achieves a high loading content of inhibitors (40 wt %). The obtained UG-BP platform exhibits pH-sensitive corrosion inhibition effects due to its charged groups. The epoxy/UG-BP coating possesses integrated properties of enhanced mechanical properties (>94%), efficient pH-sensitive self-healing behaviors (98.5% healing efficiency over 7 days), and excellent anticorrosion performance (4.21 × 109 Ω·cm2 over 60 days), which stands out from previous related works. Moreover, the interfacial anticorrosion mechanism of UG-BP is revealed in detail, which can inhibit the oxidation of Fe2+ and promote the passivation of corrosion products by a dehydration process. This work provides a universal activation-induced strategy for developing loading-enhanced and tailor-made graphene platforms in extended smart systems and demonstrates a promising smart self-healing coating for advanced anticorrosion applications.

源语言英语
页(从-至)23679-23689
页数11
期刊ACS applied materials & interfaces
15
19
DOI
出版状态已出版 - 17 5月 2023
已对外发布

指纹

探究 'Engineering Active-Site-Induced Homogeneous Growth of Polydopamine Nanocontainers on Loading-Enhanced Ultrathin Graphene for Smart Self-Healing Anticorrosion Coatings' 的科研主题。它们共同构成独一无二的指纹。

引用此

Chen, G., Jin, B., Zhang, Z., Zhao, J., Li, Y., He, Y., & Luo, J. (2023). Engineering Active-Site-Induced Homogeneous Growth of Polydopamine Nanocontainers on Loading-Enhanced Ultrathin Graphene for Smart Self-Healing Anticorrosion Coatings. ACS applied materials & interfaces, 15(19), 23679-23689. https://doi.org/10.1021/acsami.3c03276