TY - JOUR
T1 - Energy Release Characteristics and Reaction Mechanism of PTFE/Al/Bi2 O3 Reactive Materials under Drop-Hammer Test
AU - Jiang, Chunlan
AU - Hu, Rong
AU - Mao, Liang
AU - Wang, Zaicheng
AU - Xu, Wenyu
AU - Hu, Wanxiang
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - To obtain the influence of the Bi2 O3 particle content of a PTFE/Al/Bi2 O3 reactive material (later referred to as PAB) on its shock-induced chemical reaction (SICR) characteristics, five kinds of PAB with different Bi2 O3 contents were prepared; the reaction process in a drop-hammer test, recorded using a high-speed camera, was analyzed. The ignition and reaction mechanisms of PAB under mechanical impact were analyzed based on the thermochemical reaction characteristics and the microstructure. The results show that with an increase in Bi2 O3 content, the shock-induced chemical reaction duration and the sensitivity of PAB increase, and then decrease. When the Bi2 O3 content is 9%, the impact sensitivity is the highest and the reaction duration is the longest. The heating at the crack tip is responsible for PAB ignition under long-pulse low-velocity impact. During ignition, PAB undergoes several physicochemical changes such as the melting of PTFE, a PTFE/Bi2 O3 reaction, an Al/Bi2 O3 reaction, pyrolysis of the melted PTFE, and a C2 F4/Al reaction; moreover, the presence of Bi2 O3 decreases the excitation threshold of the reactive material, which facilitates the propagation of the reaction and improves the degree of the reaction and overall energy release of the reactive material.
AB - To obtain the influence of the Bi2 O3 particle content of a PTFE/Al/Bi2 O3 reactive material (later referred to as PAB) on its shock-induced chemical reaction (SICR) characteristics, five kinds of PAB with different Bi2 O3 contents were prepared; the reaction process in a drop-hammer test, recorded using a high-speed camera, was analyzed. The ignition and reaction mechanisms of PAB under mechanical impact were analyzed based on the thermochemical reaction characteristics and the microstructure. The results show that with an increase in Bi2 O3 content, the shock-induced chemical reaction duration and the sensitivity of PAB increase, and then decrease. When the Bi2 O3 content is 9%, the impact sensitivity is the highest and the reaction duration is the longest. The heating at the crack tip is responsible for PAB ignition under long-pulse low-velocity impact. During ignition, PAB undergoes several physicochemical changes such as the melting of PTFE, a PTFE/Bi2 O3 reaction, an Al/Bi2 O3 reaction, pyrolysis of the melted PTFE, and a C2 F4/Al reaction; moreover, the presence of Bi2 O3 decreases the excitation threshold of the reactive material, which facilitates the propagation of the reaction and improves the degree of the reaction and overall energy release of the reactive material.
KW - PTFE-based reactive materials
KW - content of Bi O
KW - drophammer test
KW - shock-induced chemical reaction
UR - http://www.scopus.com/inward/record.url?scp=85128279388&partnerID=8YFLogxK
U2 - 10.3390/polym14071415
DO - 10.3390/polym14071415
M3 - Article
AN - SCOPUS:85128279388
SN - 2073-4360
VL - 14
JO - Polymers
JF - Polymers
IS - 7
M1 - 1415
ER -