TY - JOUR
T1 - Energy output characteristics of an enhanced aluminized explosive
T2 - Impact of Al-Li alloy fuel
AU - Yao, Jie
AU - Chang, Kanghua
AU - Yang, Fengyou
AU - Guo, Xueyong
AU - Bi, Xiaolu
AU - Nie, Jianxin
AU - Yan, Shi
AU - Jiao, Qingjie
N1 - Publisher Copyright:
© 2025
PY - 2025/5
Y1 - 2025/5
N2 - Applying new alloy fuels is critical for improving the energy release characteristics of aluminized explosives. Al-Li alloy fuel has become a promising fuel for metallized explosives due to its low ignition temperature, short ignition delay, and fast combustion rate. In this study, three different Al-Li alloy fuels (Li content 2 %, 5 %, and 10 %) were selected to replace pure Al particles, and their effect on oxidation, ignition, and combustion characteristics were examined. Thermogravimetric-differential scanning calorimetry revealed that using Al-Li alloy can cause early oxidation and increase the oxidation rate and weight gain, which is positively correlated with the Li content. Furthermore, the oxygen bomb calorimeter, closed bomb, and laser ignition measurements revealed that adding Li can promote the ignition and combustion of Al and increase its combustion calorific value. Among them, AlLi10 demonstrated the most balanced combination of high combustion calorific value, high combustion intensity, and short ignition delay. Additionally, aging experiments demonstrated that alloy fuels with more Li content are more easily oxidized, which makes it easy to react with HTPB and affects the safety of explosives. The designed HMX/AlLi2/HTPB explosive samples demonstrated improved detonation heat, detonation velocity, detonation field temperature, and near-field shock wave overpressure of the explosive when using Al-Li alloy fuel due to the ignition and combustion characteristics of Al-Li alloy fuel. Furthermore, the study explained the energy output structure of highly active alloy fuels in metalized explosive systems and proposed a micro-explosion refinement reaction model of Al-Li alloy fuel in the post-detonation combustion zone. The findings of this study may serve to develop AlLi2 alloy fuel as an attractive candidate for metalized explosives to enhance energy release.
AB - Applying new alloy fuels is critical for improving the energy release characteristics of aluminized explosives. Al-Li alloy fuel has become a promising fuel for metallized explosives due to its low ignition temperature, short ignition delay, and fast combustion rate. In this study, three different Al-Li alloy fuels (Li content 2 %, 5 %, and 10 %) were selected to replace pure Al particles, and their effect on oxidation, ignition, and combustion characteristics were examined. Thermogravimetric-differential scanning calorimetry revealed that using Al-Li alloy can cause early oxidation and increase the oxidation rate and weight gain, which is positively correlated with the Li content. Furthermore, the oxygen bomb calorimeter, closed bomb, and laser ignition measurements revealed that adding Li can promote the ignition and combustion of Al and increase its combustion calorific value. Among them, AlLi10 demonstrated the most balanced combination of high combustion calorific value, high combustion intensity, and short ignition delay. Additionally, aging experiments demonstrated that alloy fuels with more Li content are more easily oxidized, which makes it easy to react with HTPB and affects the safety of explosives. The designed HMX/AlLi2/HTPB explosive samples demonstrated improved detonation heat, detonation velocity, detonation field temperature, and near-field shock wave overpressure of the explosive when using Al-Li alloy fuel due to the ignition and combustion characteristics of Al-Li alloy fuel. Furthermore, the study explained the energy output structure of highly active alloy fuels in metalized explosive systems and proposed a micro-explosion refinement reaction model of Al-Li alloy fuel in the post-detonation combustion zone. The findings of this study may serve to develop AlLi2 alloy fuel as an attractive candidate for metalized explosives to enhance energy release.
KW - Afterburn zone
KW - Al-Li alloy fuel
KW - Aluminized explosives
KW - Energy release characteristics
KW - Ignition combustion
UR - http://www.scopus.com/inward/record.url?scp=85217923407&partnerID=8YFLogxK
U2 - 10.1016/j.combustflame.2025.114064
DO - 10.1016/j.combustflame.2025.114064
M3 - Article
AN - SCOPUS:85217923407
SN - 0010-2180
VL - 275
JO - Combustion and Flame
JF - Combustion and Flame
M1 - 114064
ER -