Energy-Efficient WiFi Backscatter Communication for Green IoTs

Yimeng Huang, Lijie Liu, Jihong Yu, Yuguang Fang, Wei Gong*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

The boom of the Internet of Things has revolutionized people's lives, but it has also resulted in massive resource consumption and environmental pollution. Recently, Green IoT (GIoT) has become a worldwide consensus to address this issue. In this paper, we propose EEWScatter, an energy-efficient WiFi backscatter communication system to pursue the goal of GIoT. Unlike previous backscatter systems that solely focus on tags, our approach offers a comprehensive system-wide view on energy conservation. Specifically, we reuse ambient signals as carriers and utilize an ultra-low-power and battery-free design for tag nodes by backscatter. Further, we design a new CRC-based algorithm that enables the demodulation of both ambient and tag data by only a single receiver while using ambient carriers. Such a design eliminates system reliance on redundant transceivers with high power consumption. Results demonstrate that EEWScatter achieves the lowest overall system power consumption and saves at least half of the energy. What's more, the power consumption of our tag is only 1/1000 of that of active radio.

源语言英语
主期刊名GLOBECOM 2023 - 2023 IEEE Global Communications Conference
出版商Institute of Electrical and Electronics Engineers Inc.
6207-6212
页数6
ISBN(电子版)9798350310900
DOI
出版状态已出版 - 2023
活动2023 IEEE Global Communications Conference, GLOBECOM 2023 - Kuala Lumpur, 马来西亚
期限: 4 12月 20238 12月 2023

出版系列

姓名Proceedings - IEEE Global Communications Conference, GLOBECOM
ISSN(印刷版)2334-0983
ISSN(电子版)2576-6813

会议

会议2023 IEEE Global Communications Conference, GLOBECOM 2023
国家/地区马来西亚
Kuala Lumpur
时期4/12/238/12/23

指纹

探究 'Energy-Efficient WiFi Backscatter Communication for Green IoTs' 的科研主题。它们共同构成独一无二的指纹。

引用此