Electrodynamic tether and brake sails combination deorbit design

Heng Jiang, Rui Zhong*, Rui Qi

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Given the growing threat of an impending space debris crisis, nations worldwide have intensified their research efforts in satellite deorbiting technologies. Electrodynamic tether and braking sails stand out as popular methods for spacecraft deorbiting that do away with the necessity for propellant. However, these methods possess their own set of limitations. This paper presents a holistic dynamical model for a fusion of electrodynamic tether and braking sails. The aim is to avoid the complex nonlinear dynamics during the deployment, retrieval, and dwell time of electrodynamic tether, while compensating for the insufficient trust generated by braking sails in high orbital environments. The objective is to enable satellite to deorbit swiftly and stably under a broader range of conditions. Specifically accomplishing the following three aspects: conceptualizing the design of an ideal equipment, implementing simulated deorbiting process, and conducting an efficiency comparative analysis with prevalent current deorbiting methods. Through numerical simulations, the effectiveness and feasibility of this proposed design have been validated.

源语言英语
页(从-至)669-678
页数10
期刊Acta Astronautica
226
DOI
出版状态已出版 - 1月 2025

指纹

探究 'Electrodynamic tether and brake sails combination deorbit design' 的科研主题。它们共同构成独一无二的指纹。

引用此