摘要
In this paper, we investigate universal inequalities for eigenvalues of the Dirichlet Laplacian and the clamped plate problem on a bounded domain in an n-dimensional polydisk D n. Moreover, from the domain monotonicity of the eigenvalue, we can prove that if the first eigenvalue of the Dirichlet Laplacian tends to n/4 when the domain tends to the polydisk D n, then all of the eigenvalues tend to n/4.
源语言 | 英语 |
---|---|
文章编号 | 1250014 |
期刊 | International Journal of Mathematics |
卷 | 23 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 1月 2012 |
已对外发布 | 是 |