Efficient Top-k edge structural diversity search

Qi Zhang, Rong Hua Li, Qixuan Yang, Guoren Wang*, Lu Qin

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

The structural diversity of an edge, which is measured by the number of connected components of the edge's ego-network, has recently been recognized as a key metric for analyzing social influence and information diffusion in social networks. Given this, an important problem in social network analysis is to identify top-k edges that have the highest structural diversities. In this work, we for the first time perform a systematical study for the top-k edge structural diversity search problem on large graphs. Specifically, we first develop a new online search framework with two basic upper-bounding rules to efficiently solve this problem. Then, we propose a new index structure using near-linear space to process the top-k edge structural diversity search in near-optimal time. To create such an index structure, we devise an efficient algorithm based on an interesting connection between our problem and the 4-clique enumeration problem. In addition, we also propose efficient index maintenance techniques to handle dynamic graphs. The results of extensive experiments on five large real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.

源语言英语
主期刊名Proceedings - 2020 IEEE 36th International Conference on Data Engineering, ICDE 2020
出版商IEEE Computer Society
205-216
页数12
ISBN(电子版)9781728129037
DOI
出版状态已出版 - 4月 2020
活动36th IEEE International Conference on Data Engineering, ICDE 2020 - Dallas, 美国
期限: 20 4月 202024 4月 2020

出版系列

姓名Proceedings - International Conference on Data Engineering
2020-April
ISSN(印刷版)1084-4627

会议

会议36th IEEE International Conference on Data Engineering, ICDE 2020
国家/地区美国
Dallas
时期20/04/2024/04/20

指纹

探究 'Efficient Top-k edge structural diversity search' 的科研主题。它们共同构成独一无二的指纹。

引用此