TY - JOUR
T1 - Efficient preparation of ultrathin ceramic wafer membranes for the high-effective treatment of the oilfield produced water
AU - Yu, Qinghai
AU - Zhu, Jiaming
AU - Gong, Genghao
AU - Yu, Liang
AU - Hu, Yunxia
AU - Li, Jianxin
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - Efficient preparation of ceramic membranes helps to reduce costs and makes them more competitive in the field of wastewater treatment. In this work, an ultrathin Al2O3 ceramic wafer membrane with a thickness of 250 µm and the mean pore size of approximately 200 nm was prepared from the Al2O3/polysulfone slurries via a casting-phase inversion/sintering approach. This ultrathin and hydrophilic ceramic wafer has a fully sponge-like and slightly asymmetric structure and desirable porosity, endowing it with an exceptionally high pure water permeability of ∼ 45,000 L m-2h−1 bar−1, an ultrahigh and stable emulsion flux of 2500 ∼ 3500 L m-2h−1 bar−1, as well as a high oil rejection of 99 % against real oilfield produced water (OPW). In addition, the increased Al2O3 content enhanced the thermodynamic instability of the ceramic slurry, leading to the enhanced interfacial instability, which contributes to the uniform distribution of Al2O3 particles on the precursor membrane surface to some extent during the phase inversion process, thus to reduce the surface defects of ceramic membranes after sintering. The membrane fouling analysis revealed that the dominant fouling mechanism was cake filtration, indicating the formation of a relatively dense and smooth skin layer of the ceramic wafer, which endow it with a high flux recovery ratio of 97.8 % by a simple chemical cleaning after OPW filtration.
AB - Efficient preparation of ceramic membranes helps to reduce costs and makes them more competitive in the field of wastewater treatment. In this work, an ultrathin Al2O3 ceramic wafer membrane with a thickness of 250 µm and the mean pore size of approximately 200 nm was prepared from the Al2O3/polysulfone slurries via a casting-phase inversion/sintering approach. This ultrathin and hydrophilic ceramic wafer has a fully sponge-like and slightly asymmetric structure and desirable porosity, endowing it with an exceptionally high pure water permeability of ∼ 45,000 L m-2h−1 bar−1, an ultrahigh and stable emulsion flux of 2500 ∼ 3500 L m-2h−1 bar−1, as well as a high oil rejection of 99 % against real oilfield produced water (OPW). In addition, the increased Al2O3 content enhanced the thermodynamic instability of the ceramic slurry, leading to the enhanced interfacial instability, which contributes to the uniform distribution of Al2O3 particles on the precursor membrane surface to some extent during the phase inversion process, thus to reduce the surface defects of ceramic membranes after sintering. The membrane fouling analysis revealed that the dominant fouling mechanism was cake filtration, indicating the formation of a relatively dense and smooth skin layer of the ceramic wafer, which endow it with a high flux recovery ratio of 97.8 % by a simple chemical cleaning after OPW filtration.
KW - Ceramic wafer
KW - Membrane separation
KW - Oily wastewater treatment
KW - Phase-inversion/sintering
UR - http://www.scopus.com/inward/record.url?scp=85143851545&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2022.122720
DO - 10.1016/j.seppur.2022.122720
M3 - Article
AN - SCOPUS:85143851545
SN - 1383-5866
VL - 308
JO - Separation and Purification Technology
JF - Separation and Purification Technology
M1 - 122720
ER -