Efficient Aerial Image Object Detection with Imaging Condition Decomposition

Ren Jin*, Zikai Jia, Zhaochen Chu

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Object detection in aerial images faces domain adaptive challenges, such as changes in shooting height, viewing angle, and weather. These changes constitute a large number of fine-grained domains that place greater demands on network's generalizability. To tackle these challenges, we propose a submodule named Fine-grained Feature Disentanglement which decomposes image features into domain-invariant and domain-specific using practical imaging condition parameters. The composite feature can improve the domain generalization and single domain accuracy compared to the conventional fine-grained domain detection method. The proposed algorithm is compared with state-of-the-art fine-grained domain detectors on the UAVDT and VisDrone datasets. The results show that it achieves an average detection precision improvement of 5.7 and 2.4, respectively.

源语言英语
主期刊名2023 IEEE International Conference on Image Processing, ICIP 2023 - Proceedings
出版商IEEE Computer Society
620-624
页数5
ISBN(电子版)9781728198354
DOI
出版状态已出版 - 2023
活动30th IEEE International Conference on Image Processing, ICIP 2023 - Kuala Lumpur, 马来西亚
期限: 8 10月 202311 10月 2023

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

会议

会议30th IEEE International Conference on Image Processing, ICIP 2023
国家/地区马来西亚
Kuala Lumpur
时期8/10/2311/10/23

指纹

探究 'Efficient Aerial Image Object Detection with Imaging Condition Decomposition' 的科研主题。它们共同构成独一无二的指纹。

引用此