TY - JOUR
T1 - Effects of transition metal doping on electrochemical properties of single-crystalline LiNi0.7Co0.1Mn0.2O2 cathode materials for lithium-ion batteries
AU - Zhang, Bao
AU - Cheng, Lei
AU - Deng, Peng
AU - Xiao, Zhiming
AU - Ming, Lei
AU - Zhao, Yi
AU - Xu, Baohe
AU - Zhang, Jiafeng
AU - Wu, Bin
AU - Ou, Xing
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/8/15
Y1 - 2021/8/15
N2 - Layer Ni-rich cathode material has been attracted much attention due to its high energy density. A critical challenge of Ni-rich LiNi1−x-yCoxMnyO2 systems is the severe capacity fading and poor rate capability due to the structural degradation during lithium-ion battery (LIB) cycle process. In this study, we employ a fast screening methodology to determine the effects of doping single-crystalline LiNi0.7Co0.1Mn0.2O2 with cations Nb5+, Sr2+, Y3+, and then focus on the effects of Nb-ion doping on the structural stabilization (Nb-NCM). Nb ions doping and single crystallization are applied for LiNi0.7Co0.1Mn0.2O2 (Nb-NCM), which enhance the structural stability and upgrade the electrochemical performance. Impressively, the modified Nb-NCM material shows remarkably cycling at the rate of 1 C (3.0–4.5 V) with a capacity retention of 80.1% after 200 cycles. Even at high temperatures (45 ℃), the structure of Nb-NCM also remains stable, which has a capacity of 149.8 mA h g−1 at 1 C (3.0–4.5 V) after 100 cycles. Further studies reveal that the successful doping of Nb-ion effectively inhibits cation mixing degree and structural degradation, and increases the diffusion coefficient of lithium-ion, which is the key to obtain the excellent electrochemical performance for LIBs. The present work indicates that the method of Nb-ion doping single-crystalline particles is an effective strategy to improve the stability of layered structure of Ni-rich NCM cathode material, and it represents an improve advance in the development of outstanding performance lithium-ion batteries.
AB - Layer Ni-rich cathode material has been attracted much attention due to its high energy density. A critical challenge of Ni-rich LiNi1−x-yCoxMnyO2 systems is the severe capacity fading and poor rate capability due to the structural degradation during lithium-ion battery (LIB) cycle process. In this study, we employ a fast screening methodology to determine the effects of doping single-crystalline LiNi0.7Co0.1Mn0.2O2 with cations Nb5+, Sr2+, Y3+, and then focus on the effects of Nb-ion doping on the structural stabilization (Nb-NCM). Nb ions doping and single crystallization are applied for LiNi0.7Co0.1Mn0.2O2 (Nb-NCM), which enhance the structural stability and upgrade the electrochemical performance. Impressively, the modified Nb-NCM material shows remarkably cycling at the rate of 1 C (3.0–4.5 V) with a capacity retention of 80.1% after 200 cycles. Even at high temperatures (45 ℃), the structure of Nb-NCM also remains stable, which has a capacity of 149.8 mA h g−1 at 1 C (3.0–4.5 V) after 100 cycles. Further studies reveal that the successful doping of Nb-ion effectively inhibits cation mixing degree and structural degradation, and increases the diffusion coefficient of lithium-ion, which is the key to obtain the excellent electrochemical performance for LIBs. The present work indicates that the method of Nb-ion doping single-crystalline particles is an effective strategy to improve the stability of layered structure of Ni-rich NCM cathode material, and it represents an improve advance in the development of outstanding performance lithium-ion batteries.
KW - Ni-rich cathode
KW - Single-crystalline
KW - Structural stability
KW - Various cations doping
UR - http://www.scopus.com/inward/record.url?scp=85103732787&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2021.159619
DO - 10.1016/j.jallcom.2021.159619
M3 - Article
AN - SCOPUS:85103732787
SN - 0925-8388
VL - 872
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 159619
ER -