TY - JOUR
T1 - Effects of nanoscale quantum dots in male Chinese loaches (Misgurnus anguillicaudatus)
T2 - Estrogenic interference action, toxicokinetics and oxidative stress
AU - Li, Hongcheng
AU - Luo, Wenru
AU - Tao, Yong
AU - Wu, Yuan
AU - Lv, Xuefei
AU - Zhou, Qunfang
AU - Jiang, Guibin
PY - 2009/10
Y1 - 2009/10
N2 - Quantum dots (QDs) have more and more attention as a novel example of nanocrystals due to their unique fluorescent characteristics. Recently, the toxicity and the potential environmental effects of QDs have become a research hotspot. In this work, in vivo endocrine disrupting effect, toxicokinetics and oxidative stress of QDs were characterized following the intraperitoneal dosing in Chinese loaches. Vitellogenin (Vtg) levels induced by E2 decreased significantly when administrated with the mixture of QDs and E2, which was consistent with the observations of histopathology in testes. The release of free Cd2+ from QDs and the non-specific adsorption of E2 by QDs might be the joint factors contributing to the inhibition of Vtg expression induced by E2 in the male Chinese loaches. In the muscle, bone, intestines, blood and testis, CdSe QDs reached the maximal concentration (C max) in approximately 1-h postinjection and subsequently presented downtrend with the prolonged time. Whereas, there were even increasing tendencies of CdSe QDs' concentrations in the liver and kidney. It is educible that CdSe QDs can be persistent at least for 7 days, indicating the overall half-life of CdSe QDs in the fish body is very long. The measurement of hepatic superoxide dismutase (SOD) activity and reduced glutathione (GSH) content indicate that QDs have smaller effects on the antioxidative system of the organisms compared with free Cd2+ due to the effective prevention of the release of Cd by PEG coating of QDs. The comprehensive evaluation of QDs' toxicity in the present study provides an essential and general framework towards more focused research on the elucidation of the biological effects of QDs in vivo.
AB - Quantum dots (QDs) have more and more attention as a novel example of nanocrystals due to their unique fluorescent characteristics. Recently, the toxicity and the potential environmental effects of QDs have become a research hotspot. In this work, in vivo endocrine disrupting effect, toxicokinetics and oxidative stress of QDs were characterized following the intraperitoneal dosing in Chinese loaches. Vitellogenin (Vtg) levels induced by E2 decreased significantly when administrated with the mixture of QDs and E2, which was consistent with the observations of histopathology in testes. The release of free Cd2+ from QDs and the non-specific adsorption of E2 by QDs might be the joint factors contributing to the inhibition of Vtg expression induced by E2 in the male Chinese loaches. In the muscle, bone, intestines, blood and testis, CdSe QDs reached the maximal concentration (C max) in approximately 1-h postinjection and subsequently presented downtrend with the prolonged time. Whereas, there were even increasing tendencies of CdSe QDs' concentrations in the liver and kidney. It is educible that CdSe QDs can be persistent at least for 7 days, indicating the overall half-life of CdSe QDs in the fish body is very long. The measurement of hepatic superoxide dismutase (SOD) activity and reduced glutathione (GSH) content indicate that QDs have smaller effects on the antioxidative system of the organisms compared with free Cd2+ due to the effective prevention of the release of Cd by PEG coating of QDs. The comprehensive evaluation of QDs' toxicity in the present study provides an essential and general framework towards more focused research on the elucidation of the biological effects of QDs in vivo.
KW - Estrogenic effect
KW - Oxidative stress
KW - Quantum dot
KW - Toxicokinetics
UR - http://www.scopus.com/inward/record.url?scp=70350228521&partnerID=8YFLogxK
U2 - 10.1007/s11426-009-0226-5
DO - 10.1007/s11426-009-0226-5
M3 - Article
AN - SCOPUS:70350228521
SN - 1006-9291
VL - 52
SP - 1683
EP - 1690
JO - Science in China, Series B: Chemistry
JF - Science in China, Series B: Chemistry
IS - 10
ER -