TY - JOUR
T1 - Effect of the aromatic amine curing agent structure on properties of epoxy resin-based syntactic foams
AU - Yu, Sizhu
AU - Li, Xiaodong
AU - Zou, Meishuai
AU - Guo, Xiaoyan
AU - Ma, Haoxuan
AU - Wang, Shuo
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/9/15
Y1 - 2020/9/15
N2 - Epoxy resin is one of the commonly used matrixes of syntactic foams as a buoyancy material, the curing agents of which affect some of the properties for syntactic foams. Therefore, the curing reactions of N,N,N′,N′-tetraepoxypropyl-4,4′-diaminodiphenylmethane (AG-80) epoxy resin between 4,4-diaminodiphenyl methane (DDM) and the mixture of m-xylylenediamine and DDM (DDM-m-XDA) systems are studied. The DDM mixed with m-XDA enhances curing reactions with the AG-80 epoxy resin, and the mechanisms of the two curing systems are different through nonisothermal kinetics. Compared with a single curing system, there are some wrinkles on the surface of the AG-80/DDM-m-XDA matrix because of the disordered network. Composited with hollow glass microspheres (HGMs), the more flexible m-XDA structure enhances the interfacial adhesion between the matrix and HGM for syntactic foams. However, the wrinkles in the matrix increase the broken degree of HGMs; especially at HGM contents higher than 55%, the flaw increases the density and water absorption of syntactic foams; meanwhile, it decreases the compressive strength. Therefore, the properties of syntactic foams can be improved by mixing different molecular structure curing agents and the mixture liquid curing agent simplifies the preparation process to some extent.
AB - Epoxy resin is one of the commonly used matrixes of syntactic foams as a buoyancy material, the curing agents of which affect some of the properties for syntactic foams. Therefore, the curing reactions of N,N,N′,N′-tetraepoxypropyl-4,4′-diaminodiphenylmethane (AG-80) epoxy resin between 4,4-diaminodiphenyl methane (DDM) and the mixture of m-xylylenediamine and DDM (DDM-m-XDA) systems are studied. The DDM mixed with m-XDA enhances curing reactions with the AG-80 epoxy resin, and the mechanisms of the two curing systems are different through nonisothermal kinetics. Compared with a single curing system, there are some wrinkles on the surface of the AG-80/DDM-m-XDA matrix because of the disordered network. Composited with hollow glass microspheres (HGMs), the more flexible m-XDA structure enhances the interfacial adhesion between the matrix and HGM for syntactic foams. However, the wrinkles in the matrix increase the broken degree of HGMs; especially at HGM contents higher than 55%, the flaw increases the density and water absorption of syntactic foams; meanwhile, it decreases the compressive strength. Therefore, the properties of syntactic foams can be improved by mixing different molecular structure curing agents and the mixture liquid curing agent simplifies the preparation process to some extent.
UR - http://www.scopus.com/inward/record.url?scp=85092014730&partnerID=8YFLogxK
U2 - 10.1021/acsomega.0c03085
DO - 10.1021/acsomega.0c03085
M3 - Article
AN - SCOPUS:85092014730
SN - 2470-1343
VL - 5
SP - 23268
EP - 23275
JO - ACS Omega
JF - ACS Omega
IS - 36
ER -