Effect of hydrogen on the embrittlement susceptibility of Fe–22Mn-0.6C TWIP steel revealed by in-situ tensile tests

Dong Wang*, Xu Lu, Di Wan, Xiaofei Guo*, Roy Johnsen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

35 引用 (Scopus)

摘要

The hydrogen embrittlement (HE) behavior on a Fe–22Mn-0.6C twinning-induced plasticity (TWIP) steel was investigated by tensile tests with in-situ scanning electron microscope observation combined with electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) techniques. The tensile test specimens were cathodically pre-charged with hydrogen for 0, 50, 150, and 300 h, which accumulatively reduced the mechanical properties and induced a ductile-to-brittle fracture transition. The threshold of hydrogen content to trigger this ductile-to-brittle transition was further determined by combined thermal desorption spectroscopy (TDS) analysis and theoretical hydrogen diffusion calculation. During the tensile tests, intergranular secondary cracks were observed on the gauge surfaces of the specimens with pre-charged hydrogen. The low angle grain boundaries (LAGBs) exhibited better resistance to both crack initiation and propagation compared with high angle grain boundaries (HAGBs). In addition, the stress concentration together with the hydrogen effect on grain boundaries intersected with deformation twins are proposed as the reasons for the crack initiation and propagation.

源语言英语
文章编号140638
期刊Materials Science and Engineering: A
802
DOI
出版状态已出版 - 20 1月 2021
已对外发布

指纹

探究 'Effect of hydrogen on the embrittlement susceptibility of Fe–22Mn-0.6C TWIP steel revealed by in-situ tensile tests' 的科研主题。它们共同构成独一无二的指纹。

引用此