Effect analysis on energy conversion enhancement and NOx emission reduction of ammonia/hydrogen fuelled wavy micro-combustor for micro-thermophotovoltaic application

Lei Han, Junwei Li*, Dan Zhao, Yunzhi Xi, Xingpeng Gu, Ningfei Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

70 引用 (Scopus)

摘要

Ammonia (NH3) is regarded as an alternative fuel not only as a carbon-free fuel but also as a renewable hydrogen-carrier. It is possible that the safety in micro-combustor can be improved through partial NH3 substitution for hydrogen. However, knowledge of the thermal performance and nitrogen oxides (NOx) emission of ammonia/hydrogen combustion, especially in the micro-combustor, has been insufficient. In order to enhance thermal performance, reduce NOx emission and improve flame stabilization of ammonia/hydrogen fuelled micro-combustors for thermophotovoltaic (TPV) application, three types of micro-combustors with a wavy profile are designed and evaluated. For this, a three-dimensional (3D) numerical model with a detailed chemical reaction mechanism has been verified and applied to assess the thermal performance of the modified micro combustors in terms of the outer wall temperature distributions. The average temperature of these wavy combustors is found to be much higher than that of the conventional smooth combustor, regardless of the hydrogen/ammonia mixture flow velocity. Moreover, the wavy is a more effective measure to improve temperature uniformity when the mixture velocity is greater than 12 m/s. Comparing the flame stability behaviours of hydrogen/ammonia/air blended combustion in both the conventional and the proposed wavy combustors reveals that the blowout limit is effectively broadened. Finally, the effects of 1) hydrogen/ammonia blended ratio and 2) fuel-air equivalence ratio on NOx emissions are examined in detail. It is found that approximately 21.2% of NOx emission reduction could be achieved in the ARC wavy micro-combustor. NOx emission reduction can be gradually improved, as the nitrogen fuel mass ratio is increased. This present research sheds lights on an effective design of a micro-combustor with enhanced thermal performance and reduced NOx emission.

源语言英语
文章编号119755
期刊Fuel
289
DOI
出版状态已出版 - 1 4月 2021

指纹

探究 'Effect analysis on energy conversion enhancement and NOx emission reduction of ammonia/hydrogen fuelled wavy micro-combustor for micro-thermophotovoltaic application' 的科研主题。它们共同构成独一无二的指纹。

引用此